Cho △ nhọn ABC ,hai đường cao BD và CE . Qua D kẻ DF vuông góc với AB (F ∈AB),qua E kẻ EG vuông góc với AC.Chứng minh:
a) AD.AE=AB.AG=AC.AF
b)FG song song với BC
Cho tam giác ABC nhọn, đường cao BD và CE. Qua D kẻ DF vuông góc AB, qua E kẻ EG vuông góc AC. CMR:
A. AD. AE=AB.AG=AC.À
B. FG song song BC
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
cho tam giác ABC vuông tại A điểm M bất kì trên cạnh BC gọi D và E theo thứ tự chân đương vuông góc kẻ từ M đến AB và AC,chứng minh AM=DE(vẽ hình)
Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN
6*. Cho tam giác ABC có AM là trung tuyến và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với
AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB, cắt AC ở F. Chứng minh CF=DK.
7*. Cho tam giác ABC nhọn, M là trung điểm của BC và H là trực tâm. Đường thẳng qua H và vuông góc với MH cắt
AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự ở N và D. Chứng
minh:
a) NC=ND . b) HI=HK
8*. Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt
BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ qua F song song với BD cắt CD ở G. Chứng
minh AH.CD=AD.CG.
cho tam giác abc vuông tại a, đường cao ah , phân giác ad . kẻ hk // ab , hp//ac .
a/ chứng minh akhp là hình chữ nhật
b/ chứng minh ac.bd = ab.cd
c/ biết ab=3cm , ac=4cm . tính kp và diện tích tam giác ahd
Cho tam giác ABC, có AB= 6cm, AC=8cm BC=10 cm. a) Chứng minh tam giác ABC vuông b) Trên cạnh AB lấy điểm E sao cho AE = 4 cm, từ E kẻ đừng thẳng //BC cắt BC tại N. Tính độ dài BN,NC,EN. (vẽ hình và sử dụng định lý Ta lét ạ)
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a