Cho tam giác ABC vuông tại A , đường cao AH . Gọi M,N lần lượt là hình chiếu của H lên AB, AC . Chứng minh rằng :
a) AM.AB=AN.AC
b) MB/NC=(AB/AC)^3
c) BC.MB.NC=AH^3
a) Biết AF = 3,6; FC = 6,4. Tính DF và \(S_{ADC}\)
b) Chứng minh: \(\Delta AEF \backsim \Delta ACB\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)
Bài 6:Cho tam giác ABC vuông tại A, có đường cao AH. Cho AB = 6cm, AC = 8cm.
a) Tính AH, HB.
b) Vẽ HM vuông AB tại M, HN ^ AC tại N. Chứng minh AM.AB = AN.AC.
c) Gọi K là trungđiểm BC. Chứng minh AK vuông MN.
d) Tính \(\dfrac{S_{ANM}}{S_{ABC}}\)
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
Cho tam giác ABC Â= 90 độ đường cao AH. Gọi D,E lần lượt là hình chiếu của H lên AB, AC. Chứng minh các hệ thức a) AB^3/AC^3 = DB/EC b) HD^3/HE^3 = DB/EC c) AH^3 = DB.CE.BC
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB