a: Xét ΔABH vuông tại H có HD là đường cao
nên \(BD\cdot BA=BH^2\)
=>\(BA\cdot3,6=6^2=36\)
=>BA=10(cm)
AD+DB=BA
=>AD+3,6=10
=>AD=6,4(cm)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
=>\(HD\cdot10=6\cdot8=48\)
=>HD=4,8(cm)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE và ΔACB có
AD/AC=AE/AB
\(\widehat{DAE}\) chung
Do đó: ΔADE đồng dạng với ΔACB