Bạn xem ở đây nha
https://olm.vn/hoi-dap/detail/1162094338340.html
Bạn xem ở đây nha
https://olm.vn/hoi-dap/detail/1162094338340.html
Cho tam giác ABC vuông tại a kẻ đường cao AH, HE vuông AB tại E, HF vuông AC tại F a) Chứng minh AEHF là hình chữ nhật b) Gọi M trung điểm HB. Chứng minh ME vuông EF c) Gọi AD là trung tuyến của tam giác ABC, N trung điểm HC. Chứng minh rằng: AD=ME+NF Mong mọi người giúp
Cho ∆ABC nhọn (AB < AC). Kẻ đường cao AH. Gọi D; E và F là trung điểm của AB; AC và
BC. Gọi N là trung điểm của HC. K đối xứng H qua D.
a) Chứng minh AED ̂ = ACB ̂ và Chứng minh BDEF là hình bình hành.
b) Chứng minh EN ⊥ BC. Và chứng minh AB = KH.
c) Chứng minh DEFH là hình thang cân.
d) Dựng T đối xứng D qua BH. Chứng minh BDHT là hình thoi.
e) Trên tia đối CB lấy M sao cho CM = CF. Gọi I là giao điểm của DM và AC. Tính tỉ số AC: CI.
giải giúp e câu a,b đi ạ
1) Cho tam giác ABC có ba góc nhọn, các đường cao BH, CK. Gọi D, E lần lượt là hình chiếu của B và C lên đường thẳng HK. Gọi M là trung điểm của BC. Chứng minh rằng:
a)Tam giác MHK cân
b) DK=HE
cho △ABC nhọn(AC<AB) dựng AH là đường cao. Gọi E,F và D lần lượt là trung điểm AB,AC và HC. Kẻ EK ⊥BC tại K
a) chứng minh BK=HK
b) chứng minh 2EF=BC và suy ra EFCB là hình thang
c) chứng minh FD⊥BC và suy ra AHDF là hình thang vuông
d) chứng minh EK=FD
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF vuông góc với AB, AC lần lượt tại E và F. Gọi M, N, P lần lượt là trung điểm của BC, HB, HC. a) Chứng minh tứ giác AEHF là hình chữ nhật b) Chứng minh EN = 1 2 HB c) C/ minh tứ giác NEFP là hình thăng vuông, tính diện tích của nó biết AB = 6m, AC = 8cm d) Chứng minh AM // EN
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Từ H kẻ HM ^ AB, HK ^ AC (M trên AB, K trên AC)
a. Chứng minh AH = MK.
b. Gọi D và E lần lượt là các điểm đối xứng của H qua AB và AC.
Chứng minh D đối xứng với E qua A
c. Chứng minh BD // CE
d. Trên CK lấy điểm F sao cho KF = HM, HI song song DE (I thuộc EC)
Chứng minh ba đường thẳng AC, HI và EF đồng quy
: Cho ABC nhọn (AB<AC) có đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB,
AC, BC.
a) Chứng minh MN // HP.
b) Chứng minh
HN=1/2 AC
. Suy ra HN = MP.
c) Chứng minh MNPH là hình thang cân.
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD