Bài 2: Định lý đảo và hệ quả của định lý Talet

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khuất Hữu Khang Einstein

 Cho tam giác ABC nhọn. Các đường cao AD và BE cắt nhau tại H.
Gọi M là trung điểm của BC. Điểm P đối xứng với điểm H qua đường thẳng BC.
Điểm Q đối xứng với điểm H qua điểm M.
a) Chứng minh PQ // BC. Khi đó, tứ giác DMQP là hình gì? Vì sao?
b) Chứng minh tứ giác HCQB là hình bình hành. Tính số đo các góc ACQ; ABQ
c) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng điểm O cách đều 5 điểm A, B, P, Q, C.

Nguyễn Lê Phước Thịnh
28 tháng 10 2021 lúc 23:50

a: Ta có: H và P đối xứng nhau qua BC

nên HP⊥BC tại D

và D là trung điểm của HP

Xét ΔHPQ có 

D là trung điểm của HP

M là trung điểm của HQ

Do đó: DM là đường trung bình của ΔHPQ

Suy ra: PQ//BC


Các câu hỏi tương tự
Mộc Vân
Xem chi tiết
Quỳnh Quỳnh
Xem chi tiết
Lưu huỳnh ngọc
Xem chi tiết
12345DUYENLE
Xem chi tiết
Lưu huỳnh ngọc
Xem chi tiết
Yến Hoàng
Xem chi tiết
Đức Trí Nguyễn Hồ
Xem chi tiết
Tuyết Ngân Nguyễn
Xem chi tiết
Lưu huỳnh ngọc
Xem chi tiết