em hoc lop 7 nhung em nghi la phuong phap dong vi
em hoc lop 7 nhung em nghi la phuong phap dong vi
Bài 3: Cho tam giác ABC , M thuộc AB , N thuộc AC . Biết AM = 3cm, BM = 2cm; AN = 7,5cm ;NC = 5cm. a/ Chứng minh rằng : MN//BC b/ Gọi E là trung điểm của BC ;AE cắt MN tại F . Chứng minh FM = FN. c*/ Gọi O là giao điểm của BN và CM . Chứng minh ba điểm A ,O,E thẳng hàng.
cho tam giác ABC,lấy M thuộc AB, N thuộc AC sao cho MN//BC. gọi I là trung điểm của BC, AI cắt MN tại K. Chứng minh K là trung điểm MN
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC
Cho tam giác ABC, AM là đường trung tuyến. Đường thẳng d// BC cắt AB,AC,AM lần lượt tại D,E,N.
a) Chứng minh rằng: N là trung điểm DE
b) Gọi S là giao điểm BN và AC. K là giao điểm AB và CN. Chứng minh rằng: SK//BC
1.cho tam giác abc. d thuộc bc. m nằm giữa a và d. gọi i, k là trung điểm của mb, mc. e là giao của id và ab. f là giao cua dk và ac. chứng minh ef //ik
2. cho hình thang abcd. h nằm giữa c và d. qua h kẻ đường thẳng song song với ac cắt ad ở m. qua h kẻ duong thẳng song song với bc ở n.
a. gọi i là giao của hm và bd. k là giao của hn và ac. chứng minh ik//mn
b. gọi e, f là giao của mn vs bd và ac. chứng minh em=fn
p/s: m.n giúp mk nhanh nha mk cần gấp lắm
Cho hình thang ABCD có hai đáy là AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AC
b) Đường thẳng EF cắt AD, BC lần lượt tại H, N. Chứng minh: HE = EF = FN
c) Biết AB = 7,5cm, CD = 12cm. Tính HN.
Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:
a)\(\frac{BD}{BC}=\frac{1}{3}\)
b)\(BD=DE=EC\)
Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.
Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.
Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:
a)EF//HK
b)EF//BC
Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:
a)\(DA.EG=DB.DE\)
b)\(HC^2=HE.HA\)
c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)