a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{BME}=\widehat{CMF}\)
DO đó: ΔBEM=ΔCFM
b: Ta có: BE\(\perp\)AM
CF\(\perp\)AM
Do đó: BE//CF
Ta có: ΔBEM=ΔCFM
nên BE=CF
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{BME}=\widehat{CMF}\)
DO đó: ΔBEM=ΔCFM
b: Ta có: BE\(\perp\)AM
CF\(\perp\)AM
Do đó: BE//CF
Ta có: ΔBEM=ΔCFM
nên BE=CF
Cho tam giác ABC . Gọi M là trung điểm của BC . Quá B và C lần lượt kẻ BD và CE vuông góc với đường thẳng AM a. Chứng minh BD= CE và BD // CE b. Chứng minh BE // CD và BE = CD c. Chứng minh AD + AE = 2AM
cho tam giác ABC có AB=AC .M là trung điểm của BC
a) chứng minh tam giác AMB = tam giác AMC
b) đường thẳng C song song với AB cắt tia AM tại D .Chứng minh AM=DM
c) Gọi I,K lần lượt là trung điểm của AB,CD chứng minh I,M ,K thẳng hàng
Bài 2: Cho tam giác BAC có ba góc nhọn. Vẽ về phía ngoài tam giac ABC các tam giác ABD và ACE vuông tại A sao cho AB = AD, AC = AE. Kẻ AH vuông góc với BC tại H. Gọi M, N thứ tự là chân đường vuông góc kẻ từ D và E đến AH.
a. C/m tam giác ABH bằng tam giác DAM
b. C/m AM + AN = BC
c. C/m AH đi qua trung điểm của DE
cho tam giác abc có ab = ac lấy điểm d trên cạnh ab , điểm e trên cạnh ac sao cho ad = ae
a, chứng minh rằng be =cd
b, gọi o là giao điểm của be và cd chứng minh rằng tam giác bod = tam giác coe .
Cho tam giác ABC nhọn (AB < AC). Qua điểm A, vẽ đường thẳng xy song song BC ( tia Ay và điểm C thuộc cùng nửa mặt phẳng bờ AB). Trên tia Ay lấy điểm E và trên cạnh BC lấy cạnh D sao cho AE=BD.
A, Chứng minh rằng tam giác ABD = tam giác DEA
B, Kẻ BK và EH cùng vuông góc với AD. Chứng minh BK=EH
C, Trên tia Ax lấy điểm I sao cho AI=DC, biết AI cắt CI tại O. Chứng minh rằng OI=OC và ba điểm B, O, E thẳng hàng
Cho tam giác ABC vuông tại A. Vẽ AH vuông góc BC (H thuộc BC). Gọi I là giao của hai đường phân giác của các góc ABH và AHB. Gọi J là giao của hai đường phân giác của các góc ACH và AHC. a) Chứng minh rằng IHJ = 90 độ b) Tính tổng BIH+HIC
cho tam giác nhọn ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh rằng tam giác ABM bằng tam giác DCM. Từ đó suy ra AB= CD.
b) Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm E sao cho HA=HE. Chứng minh rằng BE=CD.
c) Gọi I là trung điểm của ED. Tính số đo MID.
Bài 4:
Cho tam giác ABC; gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao MD = MA.
a) Chứng minh: \(\Delta ABM=\Delta DCM\)
b) Chứng minh: AB // CD
c) Kẻ \(BH\perp AM\left(H\varepsilon AM\right),\) \(CK\perp DM\left(K\varepsilon DM\right)\), cho biết MK = 1,5cm. Tính độ dài của đoạn thẳng HK.
Bài 5:
Cho 3 số thực a, b, c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Chứng minh rằng: 4(a – b)(b – c) = (c – a)2.
Cho tam giác ABC có góc A = 80 độ, góc B = 50 độ, gọi Ax là tia đối của tia AB, Ay là tia phân giác của góc xAC.
a, tính góc ACB,CAx? chứng minh Ay song song BC.
b, Từ C kẻ tia Ct // AB, tia Ct cắt Ay tại E. Tính số đo các góc của tam giác AEC.
c, Qua B kẻ đường thẳng a vuông góc BC, từ A kẻ AD vuông góc a tại D. Chứng minh 3 điểm A, E, D thẳng hàng.