Luyện tập về ba trường hợp bằng nhau của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Tuấn KIệt

cho tam giác ABC , M là trung điểm của AB đường thẳng đi qua M và song song với BC cắt AC ở I đường thẳng qua I và song song với AB cắt BC ở K chứng minh rằng :

a) AM=IK

b)tam giác AMI = tam giác IKC

c) AI = IC

Amanogawa Kirara
3 tháng 12 2017 lúc 10:52

B A C K M I

a,Nối MK

Vì MI // BC (GT)

\(\widehat{MKB}\) = \(\widehat{IMK}\) (2 góc SLT)

Vì AB//IK (GT)

\(\widehat{BMK}\) = \(\widehat{MKI}\)( 2 góc SLT)

Xét ΔBMK và ΔIKM có:

\(\widehat{MKB}\)= \(\widehat{KMI}\)(CMT)

MK là cạnh chung

\(\widehat{BMK}\) = \(\widehat{IKM}\)(CMT)

⇒ ΔBMK = ΔIKM (g.c.g)

⇒ BM = IK (2 cạnh tương ứng)

mà BM = AM (M là trung điểm của AB)

nên IK = AM (=BM)

b, Vì AB // IK(GT)

mà M ∈ AB

⇒ AM // IK

\(\widehat{A}=\widehat{KIC}\) (2 góc đồng vị)

Vì AB // IK (GT)

\(\widehat{ABK}=\widehat{IKC}\) (2 góc đồng vị)

lại có: MI // BC(GT) ⇒ \(\widehat{AMI}=\widehat{ABK}\)(2 góc đồng vị)

Vậy \(\widehat{AMI}=\widehat{IKC}\)

Xét ΔAMI và ΔIKC có:

\(\widehat{A}=\widehat{KIC}\left(CMT\right)\)

AM=IK (CMT)

\(\widehat{AMI}=\widehat{IKC}\left(CMT\right)\)

⇒ ΔAMI = ΔIKC (g.c.g)

c, Ta có: ΔAMI = ΔIKC (CMT)

⇒ AI = IC (2 cạnh tương ứng)

Lê Nữ Khánh Huyền
3 tháng 12 2017 lúc 10:43

a) Ta có:MI // BC, IK // AB (gt)

Áp dụng tính chất đoạn chắn, ta có:

MI = BK

MB = IK

mà MA = MB (M là trung điểm của AB)

=> IK = MA (ĐPCM)

b) Ta có: ∠AMI = ∠KBM (2 góc đồng vị)

∠KBM = ∠CFE (2 góc đồng vị)

=> ∠AMI = ∠CFE

Xét ΔAMI và ΔIKC có:

IK = MA (cmt)

∠A = ∠KIC (2 góc đồng vị)

∠AMI = ∠CFE (cmt)

=> ΔAMI = ΔIKC (ĐPCM)

c) Ta có ΔAMI = ΔIKC (cmt)

=> AI = IC

=> I là trung diểm của AC


Các câu hỏi tương tự
Đạt Bonclay
Xem chi tiết
Nguyễn Thư
Xem chi tiết
Người Nghiêm Túc
Xem chi tiết
Dương Phương Thùy
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Người Nghiêm Túc
Xem chi tiết
Đỗ Minh Khôi
Xem chi tiết
Lâm Phương Thanh
Xem chi tiết
Tiến Phát Nguyễn
Xem chi tiết