Cho tam giác ABC có ba góc nhọn . Đường cao AF , BE cắt nhau tại H . Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC . Tia Ax và By cắt nhau tại K .
a) Chứng minh : tam giác HAE đồng dạng với tam giác HBF.
b) Chứng minh : CE.CA=CF.CB.
c) Chứng minh góc CFE bằng góc CAB.
d) Nếu tam gics ABC cân tại C, chứng minh rằng ba điểm C, H, K thẳng hàng,
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh rằng: a) Tam giác BHE đồng dạng tam giác BAH b) Tứ giác AEHF là hình chữ nhật c) AH bình = AF . AC d) CH bình = CF . CA e) Tam giác AEF đồng dạng tam giác ACB
Cho tam giác ABC nhọn (AB<AC<BC),hai đường cao AK và CF cắt nhau tại H.Có M là trung điểm của BC
a)Chứng minh tam giác ABK đồng dạng tam giác CBF.Từ đó suy ra AB.BF = BC.BK
b)Chứng minh tam giác BFK đồng dạng tam giác BCA.Từ đó suy ra BF.BA/BM.BK = 2
c)Qua H,vẽ đường thẳng vuông góc HM cắt AB và AC lần lượt tại D và E.Chứng minh : tam giác MED cân (Hướng dẫn : Chứng minh tam giác BHM đồng dạng tam giác CIH và tam giác BHN đồng dạng tam giác AIH)
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH, tia phân giác của góc ABC cắt AC tại F và AH tại E. a) Tính BC, AF, FC b) Chứng minh tam giác ABC đồng dạng tam giác HBA c) Chứng minh AE.AF=EH.FC Mong các bạn ra đáp án giúp mình câu này với Thank you các bạn❤❤❤
cho tam giác abc vuông tại a (ab<ac).vẽ ah vuông góc với bc tại h.
a/chứng minh tam giác HAC đồng dạng tam giác ABC
b/giả sử AB=15cm,AC=20cm.tính độ dài các cạnh AH
c/vẽ tia phân giác của góc BAH cắt cạnh BH tại D.chứng minh BD/HD=BC/AC.
giải giúp mình với ạ.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là điểm đối xứng của H qua các cạnh AB, AC.
a) chứng minh BD//CE.
b. Chứng minh tam giác ABD đồng dạng với tam giác ACE.
Cho tam giác ABC vuông tại A ,BI là đường phân giác (I thuộc AC ) . Kẻ CH vuông góc với đường thẳng BI (H thuộc BI)
a) Chứng minh tam giác ABI đồng dạng với tam giác HCI
b) chứng minh tam giác BHC đồng dạng với tam giác CHI
c)Cho biết AB=6cm , AC=8cm . Tính độ dài các cạnh AI , IC
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90