a , vẽ hình
xét \(\Delta BPH\) và \(\Delta CPK\) có
\(\widehat{BHP}=\widehat{CKP}=90^o\)
\(\widehat{HBP}=\widehat{KCP}\)
=> \(\Delta BPH\) đồng dạng với \(\Delta CPK\)
=> \(\frac{BP}{CP}=\frac{HP}{PH}\)
hay \(BP.KP=CP.HP\left(đpcm\right)\)
a , vẽ hình
xét \(\Delta BPH\) và \(\Delta CPK\) có
\(\widehat{BHP}=\widehat{CKP}=90^o\)
\(\widehat{HBP}=\widehat{KCP}\)
=> \(\Delta BPH\) đồng dạng với \(\Delta CPK\)
=> \(\frac{BP}{CP}=\frac{HP}{PH}\)
hay \(BP.KP=CP.HP\left(đpcm\right)\)
Cho tam giác vuông ABC vuuong tại A(AB<AC). Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc tại N.
a) C/M tứ giác AMIN là hình chữ nhật
b) Cho biết IN =3 cm;IM= 4 cm.Tính diện tích tam giác
c) Gọi D là trung điểm đối xứng của I qua N. C/M tứ giác ADCI là hình thoi; với điệu kiện nào của tam giác ABC thì tứ giác ADCI là hình vuông
d) Đường thẳng BN cắt DC tại K. Kẻ IH // BK( H thuộc DC). C/M K là trungđiểm của DH và Dk/DC=1/3
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Cho tam giác ABC, có AB = 16cm; BC = 20cm; AC = 12cm.
a) Chứng min : ∆ABC vuông tại A
b) Gọi M là trung điểm của BC. Kẻ MF vuông góc với AC tại F. Chứng minh : FA = FC
c) Gọi E là trung điểm của AB. Chứng minh : ME vuông góc AB và tính độ dài của ME
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB,AC lấy hai điểm D,E sao cho AD=AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a) CM tam giác MDC cân
b) CM HK=HC
Cho tam giác ABC . Gọi I là giao điểm của các đường phân giác trong của các góc của tam giác . từ I kẻ IM vuông góc AB , IN vuông góc với BC , IK vuông góc với AC . Qua A kẻ đường thẳng d1 song song MN , d1 cắt đường thẳng NK tại E . Qua a kẻ đường thẳng d2 cắt MN tại D . Đường thẳng ED cắt AC , AB lần lượt tại B và Q . CHỨNG MINH P, Q là đường trung bình của tam giác ABC
giúp đỡ nha mọi người
Bài 1: Cho tam giác đều ABC, trên cạnh BC lấy điểm M, kẻ MD song song với AC, kẻ ME song song với AB.
a) Chứng minh: tứ giác ADME là hình bình hành
b) Gọi O là trung điểm của DE. Chứng minh 3 điểm A,O,M thẳng hàng
c) Kẻ MI vuông góc với AB, Mk vuông góc với AC ( I thuộc AB,K thuộc AC). Tính số đo góc IOK.
Bài 2: Cho hình vuông ABCD có cạnh =4cm.Trên các cạnh AB,BC,CĐ,ĐÃ lấy theo thứ tự các điểm E,F,G,H sao cho AE=BF=CG=DH. Tính độ dài AE sao cho tứ giác EFGH có chu vi nhỏ nhất.
Bài 3: Cho x+y = 1. Tìm GTNN của M = x3 + y3 + 2xy
Giúp mình với m.n ơi,giải và vẽ ra cho mình với.mình cần gấp lắm,mai học rồi
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tam giác ABC vuông cân tại A. M là trung điểm BC và N là 1 điểm di động trên cạnh BC. Kẻ NP và NQ lần lượt vuông góc với AB và AC. tam giác MPQ làm tam giác gì
giúp mình với, thanks
Cho tam giác ABCD vuông tại A và M là trung điểm của BC. Từ M kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC). Chứng minh:
A) ADME là hình chữ nhật.
B) Gọi P là điểm đối xứng của D qua M. CM: DEPQ là hình thoi