Cho tam giác ABC và \(\sin^2A+\sin^2B=\dfrac{5}{2}\sin^2C\). Chứng minh rằng: \(sinC\le\dfrac{4}{5}\)
Mệnh đề sau đây đúng hay sai? Chứng minh rằng mệnh đề này đúng hoặc mệnh đề này sai:
\(sin^2A+sin^2B+sin^2C\le\dfrac{9}{4}\)
Cho tam giác ABC có các cạnh là a, b, c và bán kính đường tròn nội tiếp là r. Lấy điểm M tùy ý nằm trong tam giác ABC sao cho \(\widehat{BAM}=\widehat{CBM}=\widehat{ACM}=\alpha\). Chứng minh rằng: \(cot\alpha\ge\dfrac{2r\left(a^2+b^2+c^2\right)}{abc}\)
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
Trong mặt phẳng Oxy, cho tam giác ABC có AB = AC, \(\widehat{BAC}=90^0\), trung điểm của BC là M(1; -1) và trọng tâm tam giác ABC là \(G\left(\dfrac{2}{3};0\right)\)
a) Tìm tọa độ điểm A
b) Tìm tọa độ điểm B và C
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC
a) Cho \(\cot\alpha=-3\sqrt{2}\) với ( 90 < a <180 độ). Khi đó giá trị \(\tan\dfrac{\alpha}{2}+\cot\dfrac{\alpha}{2}\) bằng
b) Cho \(\sin x+\cos x=\dfrac{3}{2}\) thì sin 2a bằng
c) Cho \(\sin x+\cos x=\dfrac{1}{2}\) và \(0< x< \dfrac{\pi}{2}\). Tính giá trị sin x
Trong mặt phẳng tọa độ Oxy, cho elip (E) : \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Gọi hai tiêu điểm của (E) là \(F_1,F_2\) và M là điểm thuộc (E) sao cho \(\widehat{F_1MF_2}=60^0\). Tìm tọa độ điểm M và tính diện tích tam giác \(MF_1F_2\) ?
Trong mặt phẳng Oxy cho tam giác ABC có \(AB=AC,\widehat{BAC}=90^0\). Biết \(M\left(1;-1\right)\) là trung điểm cạnh BC và \(G\left(\dfrac{2}{3};0\right)\) là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C ?
Cho tam giác ABC có \(\widehat{A}=120^0\) và \(sinB=\dfrac{\sqrt{4b^2-a^2}}{2b}\). Tính \(\cot B+\cot C\)
1. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường trung tuyến. Kéo dài 3 trung tuyến cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\le\dfrac{9}{4}\)
2. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường cao. Kéo dài 3 đường cao cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\ge\dfrac{9}{4}\)
3. Cho tam giác ABC với O1, O2, O3 là tâm các đường trong bàng tiếp góc A, B, C. Gọi S1, S2, S3 lần lượt là diện tích các tam giác O1BC, O2CA, O3AB.
Chứng minh: \(S_1+S_2+S_3\ge3S\)