Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Tính tổng các vectơ
AM + BN + CP
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CD. CMR:
a. \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AC}\)
b. \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{AP}+\overrightarrow{BM}=\overrightarrow{MC}\)
c.\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
d. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP},\forall0\)
Cho tam giác ABC có M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tính
a. Vecto AB+ CA+ BC
b. Vecto AM+ AP
c. Vecto AM+ BN+ CP
giúp em với ạ:(
Cho ΔABC, M, N, P lần lượt là trung điểm của BC, AC, AB. Chứng minh: \(\overrightarrow{AM}\) +\(\overrightarrow{BN}\) + \(\overrightarrow{CP}\) =\(\overrightarrow{0}\)
Cho ΔABC, M, N, P lần lượt là trung điểm của BC, AC, AB. Chứng minh: \(\overrightarrow{AM}\) +\(\overrightarrow{BN}\) + \(\overrightarrow{CP}\) =\(\overrightarrow{0}\)
Cho tam giác ABC, Gọi M, N, P lần lượt là trung điểm của AB, BC, CA. Chứng minh rằng :
a, \(\overrightarrow{\text{Ạ}N}=\overrightarrow{AM}+\overrightarrow{AP}\)
b, \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
cho tam giác ABC đều có tâm O, cạnh a. Gọi M, N, P là trung điểm của AB, AC, BC
A) tính / BA→ + BC→/ theo a
b) tím các vecto có độ dài bằng /BN→/
c) chứng minh rằng NA→ + MB→ + PC→ = 0→
d) tính / MA→ + MB→ + MN→+ MP→+ MC→/
a.Hình chữ nhật ABCD. AB = 4a, BC = 2a, AC∩ BD = {O}. M là trung điểm CD
Tính tổng vecto AB+OM
b.Cho tam giác ABC đều. AB = a. M, N là trung điểm AC và AB. Tính tổng vecto CM +BN
Cho 4 điểm phân biệt A,B,C,D khẳng định nào sau đây đúng? a) AD + CD = AD + CB b) AB + BC + CD = DA c) AB + BC = CD + CA d) AB + AD =CD + CB