Cho Tam giác abc có AB=3,AC=5,BC=7, P,Q là 2 điểm xác định bởi véc tơ AP= 1/3 véc tơ AB véc tơ AQ=3/4 véc tơ AC. Tìm tích vô hướng véc tơ AB.Véc AC và cos A. Tính diện tích Tam giác ABC. Tính độ dài PQ. M là trung điểm của BC,K là điểm thuộc AC sao cho AK=x.Tìm x để AM vuông góc BK. Tìm quỹ tích những điểm M:3MA2+véc tơ MB. Véc tơ MA=0
Cho hcn ABCD có AB = 2AD, BC = a. Tính Min của độ dài vec tơ \(\overrightarrow{u}=\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\), trong đó M là điểm thay đổi trên đường thẳng BC
Cho △ABC gọi I là điểm trên cạnh BC sao cho độ dài CI =\(\dfrac{3}{2}\)BI và J ∈ BC kéo dài sao cho độ dài JB =\(\dfrac{2}{5}\)JC
a. Phân tích \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\) theo 2 véctơ \(\overrightarrow{AB}\), \(\overrightarrow{AC}\). Từ đó phân tích AB, AC theo AI. AJ
b. G là trọng tâm △ABC, phân tích \(\overrightarrow{AG}\) theo các véctơ \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\)
Cho tam giác ABC nội tiếp (O ; R). Gọi E là trung điểm của AB và F là điểm thỏa mãn \(\overrightarrow{AC}=3\overrightarrow{AF}\). Vẽ hình bình hành AEMF. Biểu diễn giá trị nhỏ nhất của P theo R
P = (MA + MB + MC)2 + 11OM2
Trong mặt phẳng Oxy cho tam giác ABC, biết đỉnh A(1; 1) và tọa đọ trọng tâm G (1; 2). Cạnh AC và đường trung trục của nó lần lượt có phương trình là \(x+y-2=0\) và \(-x+y-2=0\). Các điểm M và N lần lượt là trung điểm của BC và AC
a) Hãy tìm tọa độ các điểm M và N
b) Viết phương trình hai đường thẳng chứa hai cạnh AB và BC
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O; R). Tìm tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}=3a^2\)
Trong mặt phẳng Oxy, cho tam giác ABC có AB = AC, \(\widehat{BAC}=90^0\), trung điểm của BC là M(1; -1) và trọng tâm tam giác ABC là \(G\left(\dfrac{2}{3};0\right)\)
a) Tìm tọa độ điểm A
b) Tìm tọa độ điểm B và C
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC đều cạnh a. Tìm vị trí điểm M thuộc cạnh BC sao cho \(P=MA^2+MB^2+MC^2\) đạt giá trị nhỏ nhất
Cho hai điểm A(0;1) và B((3;-2). Tìm điểm M thuộc trục Oy sao cho diện tích tam giác MAB bằng 3 ta được kết quả M(0;m) hoặc M(0;n) với m < n. Tính \(H=m+2n\)