Cho tam giác đều ABC có cạnh bằng a, gọi G là trọng tâm. Tính T: \(\overrightarrow{GA}.\overrightarrow{BC}+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)
Tam giác ABC có AB = 6cm, AC = 8cm, BC = 11cm
a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và chứng tỏ rằng tam giác ABC có góc A tù
b) Trên cạnh AB lấy điểm M sao cho AM = 2cm và gọi N là trung điểm của cạnh AC. Tính \(\overrightarrow{AM}.\overrightarrow{AN}\) ?
Cho nửa đường tròn tâm O có đường kính \(AB=2R\). Gọi M và N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I
a) Chứng minh \(\overrightarrow{AI}.\overrightarrow{AM}=\overrightarrow{AI}.\overrightarrow{AB}\) và \(\overrightarrow{BI}.\overrightarrow{BN}=\overrightarrow{BI}.\overrightarrow{BA}\)
b) Hãy dùng kết quả câu a) để tính \(\overrightarrow{AI}.\overrightarrow{AM}+\overrightarrow{BI}.\overrightarrow{BN}\) theo R
cho tam giác ABC có AB=a, AC=2a, D là trung điẻm AC, M là điểm thoả mãn
\(\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{BC}\) . Tính \(\overrightarrow{BD}.\overrightarrow{AM}\)
Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng \(\overrightarrow{MH}.\overrightarrow{MA}=\dfrac{1}{4}BC^2\) ?
Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) có \(\left|\overrightarrow{a}\right|=5;\left|\overrightarrow{b}\right|=12\) và \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=13\). Tính tích vô hướng \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\) và suy ra góc giữa hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{a}+\overrightarrow{b}\)
Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) đều khác vectơ \(\overrightarrow{0}\). Tích vô hướng \(\overrightarrow{a}.\overrightarrow{b}\) khi nào dương, khi nào âm và khi nào bằng 0 ?
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow{MA}.\overrightarrow{MC}=\overrightarrow{MB}.\overrightarrow{MD}\) ?
m.n ơi giúp mk giải bài này với, mk cần gấp
Cho đường tròn tâm O đường kính AB=2R. Gọi C và D là hai điểm thuộc đường tròn cho hai dây cung AC và BD cắt nhau tại I.
a/ Chứng minh rằng: \(\overrightarrow{AI}.\overrightarrow{AC}=\overrightarrow{AI}.\overrightarrow{AB}\) và \(\overrightarrow{BI}.\overrightarrow{BD}=\overrightarrow{BI}.\overrightarrow{BA}\)
b/ Gọi M là điểm nằm ngoài đường tròn (O). Đường thẳng qua M cắt đường tròn (O) tại hai điểm E, F. Chứng minh rằng: \(\overrightarrow{ME}.\overrightarrow{MF}=MO^2-R^2\)
mk cần gấp cho ngày mai ak mong m.n giúp mình, thank you very much