Cho tam giác ABC có trọng tâm G. Gọi E và F là các điểm xác định bởi vecto EA = vecto 2EB, veto 3FA+ veto 2FC= vecto 0. Chứng minh 3 điểm E,F,G thẳng hàng. Giúp em với ạ
Cho △ABC có trọng tâm G và 2 điểm M, N sao cho: AB = 3AM; CD = 2CN
a) Chứng minh: 3 điểm M, N, G thẳng hàng
b) Biểu diễn \(\overrightarrow{AC}\) qua 2 vecto \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\)
c) Gọi k là giao điểm của AC và GN. Tính tỉ số \(\dfrac{KA}{KB}\)
cho tam giác ABC . Tìm điểm M sao cho vecto MA + vecto MB + 2 MC = vecto
Mọi người làm giúp mình với cám ơn nhiều ạ
giúp mình với các thần đồng !!
Cho G là trọng tâm tam giác ABC. CM:
a) vecto GA + vecto GB + vecto GC= vecto 0
b) vecto MA + vecto MB + vecto MC= 3 vecto MG ( với mọi M)
Cho tam giác ABC có trọng tâm G Chứng minh các VECTƠ a/GA+GB+GC=0 b/ MA+MB+MC=3MG (M là 1 điểm bất kỳ) c/ HA+HB-5HC=0 với H là điểm đối xứng của G qua C
Cho ngũ giác lồi ABCDE. Gọi G là trọng tâm của tam giac ABE, I là trung điểm CD . trên đoạn GI lấy điểm O sao cho 3OG=2OI. Chứng minh rằng với mọi điểm M ta luôn có vecto MA + vecto MB + vecto MC + vecto MD + vecto ME=5 vecto MO
Cho ngũ giác lồi ABCDE. Gọi G là trọng tâm của tam giac ABE, I là trung điểm CD . trên đoạn GI lấy điểm O sao cho 3OG=2OI. Chứng minh rằng với mọi điểm M ta luôn có vecto MA + vecto MB + vecto MC + vecto MD + vecto ME=5 vecto MO
1.Cho tam giác ABC, gọi G là trọng tâm tam giác
a.Gọi H là điểm đối xứng với G qua B. CMR
vectơ HA - 5vectơ HB + vectơ HC = vectơ 0.
b.Gọi I và J là 2 điểm thoả mãn vectơ IA = 2vectơ IB , 3vectơ JA + 2vectơ JC = vectơ 0 . CM 3 điểm I,J,G thẳng hàng .
2.Cho tam giác đều ABC tâm O. M là điểm bất kì trong tam giác . Hạ MD,ME,MF lần lượt vuông góc với các cạnh BC,CA,AB.CMR vectơ MD + vectơ ME + vectơ MF = 3/2 vectơ MO