cho tam giác ABC (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh tam giác ACM= tam giác DBM. b) Kẻ BE vuông góc với AM tại E. Trên tia MD lấy điểm F sao cho M là trung điểm của EF. Chứng minh CF vuông góc với AD. c) Trên tia FB lấy điểm G sao cho B là trung điểm FG. Gọi H là trung điểm của BE. Chứng minh ba điểm G,H,C thẳng hàng
Cho tam giác ABC có có AB = AC. Gọi D là trung điểm của cạnh BC. a) Chứng minh rằng : tam giác ABD bằng tam giác ACD b) Trên tia đối của tia DA, lấy điểm M sao cho MD = MA. Chứng minh: AB // CD.
Cho tam giác ABC có AB=AC. Gọi M là một điểm nằm trong tam giác sao cho MB=MC. N là trung điểm của BC . Chứng minh rằng
A) AM là tia phân giác của góc BAC
B) MN là đường trung trực của đoạn BC.
C) Ba điểm A,M,N thẳng hàng.
Cho \(\Delta ABC\) có AB = AC. D là trung điểm của BC.
a) Chứng minh: \(\Delta ADB\) = \(\Delta ADC\) và AD là tia phân giác của \(\widehat{BAC}\).
b) Vẽ \(DC\perp AD\) tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: \(\Delta AMD\) = \(\Delta AND\) và \(DC\perp AN\).
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: \(\Delta KCD\) = \(\Delta KNE\).
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy M , trên tia đối của CB lấy N sao cho BM = CN
a) CM : tam giác AMN cân
b. kẻ BE vuông góc AM (E thuộc AM),CF vuông góc AN . CM:tam giác BME= tam giác CNF
c.EB cắt FC tại O. CM: AO là phân giác của góc MAN
d.qua M kẻ vuông góc AM,qua N kẻ vuông góc AN 2 đường thẳng cắt nhau tại H . CM: A , O , H thẳng hàng
Cho có AB = AC. D là trung điểm của BC.
a) Chứng minh: = và AD là tia phân giác của .
b) Vẽ tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: = và .
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: = .
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN. Chứng minh:
a) CN vuông góc với AC và CN = AB;
b) AN = BC và AN song song với BC.
Cho tam giác ABC cân tại A . Gọi M là một điểm nằm trong tam giác sao cho MB=MC. N là trung điểm của BC . Chứng minh rằng
A) AM là tia phân giác của góc BAC
B) MN là đường trung trực của đoạn BC.
C) Ba điểm A,M,N thẳng hàng