1. Cho tam giác ABC ( AB<AC ). M là trung điểm của BC, trên tia đối của MA lấy D sao cho MA=MD. Chứng minh:
a) Tam giác ABM = tam giác DCM
b) AC//BD
c)Trên nửa mặt phẳng bờ AD không chứa B, vẽ tia Ax//CD. Trên Ax lấy điểm H sao cho AH=BC. Chứng minh 3 điểm : H;C;D thẳng hàng
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của cạnh BCa) Chứng minh
△AMB = △AMC
b)Gọi I là trung điểm đoạn thẳng AM. Trên tia CI lấy điểm N sao cho
CN = 2.CI . Chứng minh AN // BC
c) Trên tia BI lấy điểm K sao cho BK = 2.BI. Chứng minh N,A,K thẳng hàng
Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD a/ Chứng minh ABM=DCM b/ Chứng minh AB // DC c/ Chứng minh AM vuông góc với BC d/ Tìm điều kiện của tam giác ABC để ADC =30°. Chứng minh AD = BH e/ Trên tia đối của tia AC lấy H sao cho AC=AH.Chứng minh AD=BM f/ Chứng minh tam giác HBC vuông (Chỉ cần làm câu e và f )
Cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a, Chứng minh tam giác AMB=tam giác CMD
b, Chứng minh AD=CB và AD//CB
c, Gọi N là trung điểm của A. Trên tia đối của tia NC lấy điểm K sao cho NC=NK. Chứng minh D,A,K thẳng hàng
Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại M. Trên tia đối của tia MA lấy điểm D sao cho MD = MA . Chứng minh :
a) MB = MC b) AB // CD c) AM BC
Cho tam giác ABC có AB < AC . Gọi M là trung điểm cạnh BC. Kẻ BH vuông góc với AM .Trên tia đối tia đối AM lấy điểm D sao cho AD = 2MH. Chứng minh rằng BD = AC.