b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC có 3 góc nhọn với các đường cao BD , CE . e) Chứng minh BEDC là tứ giác nội tiếp . f) Chứng minh : AD.AC = AE.AB . g) Kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC . Chứng minh rằng : Ax // ED .
Cho tam giác ABC nhọn, kẻ 2 đường cao BD và CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) CM tứ giác BEDC nội tiếp . c) góc acd = góc aed . d) góc edb =ecb
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tứ giác AEHD nội tiếp
b) Chứng minh tứ giác BEDC nội tiếp
c) Chứng minh OA vuông góc với DE
Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đường tròn (O), hai đường cao BD và CE cắt nhau tại H. I là trung điểm BC. DE cắt đường thẳng BC tại M.
a) Chứng minh rằng tứ giác BCDE nội tiếp.
b) Chứng minh rằng: MD.ME=MB.MC
c) Đường thẳng MA cắt (O) tại K. Chứng minh: tứ giác AKED nội tiếp.
d) Chứng minh rằng: MH\(\perp\)AI
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O vẽ các đường cao AI,BM,CE cắt nhau tại H
a/chứng minh: tứ giác BEMC nội tiếp
b /xác định các tứ giác nội tiếp còn lại
c/ vẽ đường kính AK. Chứng minh: AB.AC=AI.AK
Cho tam giác ABC có ba góc nhọn. Đường cao BD và Ck cắt nhau tại H.
a)Chứng minh tứ giác ADHK nội tiếp được trong một đường tròn
b)Chứng minh tam giác AKD và tam giác ADB đồng dạng.
c)Kẻ tiếp tuyến Dx tại của đường tròn tâm O đường kính BC cắt AH tại M. Chứng minh là M trung điểm của AH.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, có hai đường cao BB' và CC' cắt nhau tại H a)Chứng minh tứ giác BCB'C' nội tiếp? b)Gọi H' là đối xứng của H qua BC. Chứng minh H thuộc đường tròn tâm O? c)Tia AO cắt đường tròn tâm O tại D và cắt B'C' tại I. Chứng minh AD vông góc với C'B'
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
1.Cho ∆ABC nhọn nội tiếp trong đường tròn (O),kẽ tiếp tuyến của (O) tại A và hai đường cao BD và CE
Chứng minh:
a) tứ giác BCDE nội tiếp
b) DE song song (xy)
2.Cho ∆ABC nhọn nội tiếp trong đường tròn (O) (AB<AC).Hai đường cao BF và CE cắt nhau tại H
a) Chứng minh hai tứ giác AEHF,BEFC nội tiếp