Cho tam giÁc ABC(A là góc tù), trong góc BAC vẽ Ax và Ay theo thứ tự vuông góc với AC;AB. Trên à láy điểm E sao cho AE=AC, trên Ay lấy điểm M sao cho AM=AB. Đường cao AH của tam giác abc các EM tại H'. Đường cao AD của tam giác AEM cách BC tại D'. CHứng minh rằng:
a) tam giác AEH'= tam giác CAD'
b) AH' là trung tuyến của tam giác AEM
Cho tam giác ABC có AB bé hơn AC, AM là tia phân giác của góc A ( M thuộc BC ). Trên tia AC lấy điểm D sao cho AD=AB
a) Chứng minh BM=MD
b) Gọi K là giao điểm của AB và DM. Chứng minh tam giác tam giác DAK=tam giác BAC
c) Chứng minh AM là đường trung trực của đoạn thẳng BD
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC, đường cao AH (H thuộc BC).Trên nửa mặt phẳng AC không chứa điểm B.Vẽ tam giác ACD sao cho AD = BC, CD = AD. Chứng minh rằng:
a) AB // CD
b) AH vuông góc với AD
Cho tam giác ABC có góc A tù,trong góc BAC vẽ 2 tia Ax và Ay theo tt vuông góc lần lượt với AC và AB. Trên tia Ax lấy điểm E sao cho AE=AC, trên tia Ay lấy ₫ M sao cho AM=AB. Đường cao AH của tam giác ABC cắt EM ở I, đường cao AD của tam giác AEM cắt BC ở K. CM rằng:
a) tam giác AEI=tam giácCAK
b) IE=IM
Cho tam giác ABC có góc A tù,trong góc BAC vẽ 2 tia Ax và Ay theo tt vuông góc lần lượt với AC và AB. Trên tia Ax lấy điểm E sao cho AE=AC, trên tia Ay lấy ₫ M sao cho AM=AB. Đường cao AH của tam giác ABC cắt EM ở I, đường cao AD của tam giác AEM cắt BC ở K. CM rằng:
a) tam giác AEI=tam giácCAK
b) IE=IM
Cho tam giác ABC có góc A tù,trong góc BAC vẽ 2 tia Ax và Ay theo tt vuông góc lần lượt với AC và AB. Trên tia Ax lấy điểm E sao cho AE=AC, trên tia Ay lấy ₫ M sao cho AM=AB. Đường cao AH của tam giác ABC cắt EM ở I, đường cao AD của tam giác AEM cắt BC ở K. CM rằng:
a) tam giác AEI=tam giácCAK
b) IE=IM
Cho Δ ABC, góc A = 90, AB<AC, kẻ AH vuông góc với BC tại H. Lấy M thuộc tia HC sao cho BH = HN, kẻ CK vuông góc với đường thẳng AM( K thuộc tia AM)
Chứng minh tia CB la phân giác của góc ACKTìm điều kiện của ΔABC để AM=MCPhân giác của góc ABC cắt AH, AC lần lượt E và D lấy F thuộc tia đối của tia AE sao cho AD =AF. Tính góc DFC + góc DBC + góc FCB