Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.AC}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.AC}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
\(S_{ABC}=\dfrac{AB.BC.CA}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.CA}{2.AN}\)