Ta có : \(\widehat{HCK}=\widehat{HBC}\) ( cùng phụ với \(\widehat{BKC}\) ) ( 1 )
\(\widehat{HCB}+\widehat{HBC}=90^0\) ( 2 góc nhọn trong tam giác vuông )
\(\widehat{BCA}+\widehat{CBA}=90^0\) ( 2 góc nhọn trong tam giác vuông )
Nên : \(\widehat{HCB}+\widehat{HBC}+\widehat{BCA}+\widehat{CBA}=90^0+90^0=180^0\)
Hay : \(\widehat{HCA}+\widehat{HBA}=180^0\)
mà : \(\widehat{HBx}+\widehat{HBA}=180^0\) ( hai góc kề bù )
Do đó : \(\widehat{HCA}=\widehat{HBx}\left(2\right)\)
mà : \(\widehat{HBC}=\widehat{HBx}\) ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : \(\widehat{HCK}=\widehat{HCA}\left(đpcm\right)\)