cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC
Cho tam giác ABC vuông tại A , đường cao AH . Gọi M,N lần lượt là hình chiếu của H lên AB, AC . Chứng minh rằng :
a) AM.AB=AN.AC
b) MB/NC=(AB/AC)^3
c) BC.MB.NC=AH^3
Bài 9: Cho tam giác ABC vuông tại A. Đường cao AH. Gọi M,N là hình chiếu vuông góc của H lần lượt lên AB, AC.
a) Chứng minh: BM^2 + 3AH^2 + CN^2 = BC^2
b) Chứng minh: AH3 = BM.CN.BC
c) Chứng minh: AB^3 trên AC^3 = BM trên CN
Cho tam giác ABC Â= 90 độ đường cao AH. Gọi D,E lần lượt là hình chiếu của H lên AB, AC. Chứng minh các hệ thức a) AB^3/AC^3 = DB/EC b) HD^3/HE^3 = DB/EC c) AH^3 = DB.CE.BC
Cho tam giác abc, đường cao ah kẻ hm,hn lần lượt vuông góc với ab và ac a, chứng minh mb/nh = ab mũ 2 / ac mũ 2 b, chứng minh bc.bm.cn=ah mũ 3 c, chứng minh am.ab=hb.hc=mn mũ 2 d, chứng minh bm.ba+an.ac=hb.bc e, cho hb=4cm, hc=9cm tính chu vi tam giác abc và diện tích tứ giác amhn f, gọi m,n lần lượt là hình chiếu cửa h trên ab,ac chứng minh ah mũ 3 =am.an.bc g, chứng minh (ab/ac) mũ 3 = bm/cn h, chứng minh căn bậc 3 bc mũ 2 = căn bậc 3 bm mũ 2 + căn bậc 3 cn mũ 2 i, chứng minh bm.ba+cn.ca+2.bh.ch=bc mũ 2
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH.
a) Tính BC, góc B, góc C (góc làm tròn đến phút)
b) Tính BH, AH
Gọi E, F là hình chiếu của H lần lượt lên cạnh AB, AC. Chứng minh tam giác ABC đồng dạng AFE
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC