Cho tam giác ABC có các góc đều nhọn và AB<ÁC tia phân giác của góc A cắt BC . Vẽ BE vuông góc với AD tại E .Tia BE cắt ÁC tại F
a)Chứng minh rằng AB=AF
b) Qua F vẽ đường thẳng song song BC cắt AE tại H lấy điểm K nằm giữa D và C sao cho FH=DK chứng minh rằng DH =KF và DH //KF Chứng minh rằng tam giác ABC >tam giác ACB
a) Xét tam giác ABF có AE là phân giác đồng thời là đường cao nên nó là tam giác cân tại B.
Vây thì BA = BF.
b) Xét tứ giác HDKF có HF song song và bằng DK nên HDKF là hình bình hành.
Vậy nên HD // FK ; HD = FK
Xét tam giác ABC có AB < AC nên \(\widehat{ABC}>\widehat{ACB}\)