Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB
a) Hai đường tròn (O) và (O') có vị trí tương đối như thế nào đối với nhau ?
b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì ? Vì sao ?
c) Gọi K là giao điểm của DB và đường tròn (O'). Chứng minh rằng ba điểm E, C, K thẳng hàng ?
d) Chứng minh rằng HK là tiếp tuyến của đường tròn (O')
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE
Cho tam giác ABC (AB < AC), có ba góc nhọn nội tiếp trong đường tròn tâm O,Gọi H là giao điểm của đường cao AD, BM. Gọi N là giao điểm của CH và AB, I là trung điểm BC. K đối xứng H qua I.
a) C/m K thuộc đường tròn tâm O
b)C/m AK vuông góc với MN
Giúp em ạ cần gấp
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E a) chứng minh CD vuông góc với AB, BE vuông góc với AC b)gọi K là giao điểm BE và CD. chứng minh AK vuông góc với BC
Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A,O và AE>EO). Gọi H là trung điểm của AE, CD vuông góc với AE tại H
a. Tính góc ACB
b. Tứ giác ACED là hình gì, chứng minh
c. Gọi I là giao điểm của DE và BC. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
Cho hai đườngtròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC.
a) Chứng minh rằng tứ giác DBCE là hình thoi
b) Gọi I là giao điểm của EC và đường tròn (O'). Chứng minh rằng ba điểm D, A, I thẳng hàng
c) Chứng minh rằng KI là tiếp tuyến của đường tròn (O')