ho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm K sao cho BK=BA. Gọi M là trung điểm của đoạn thẳng AK. a) Chứng minh: ∆AMB=∆KMB b) Đường thẳng BM cắt đường thẳng AC tại D. Chứng minh: DK vuông góc với BC. c) Trên tia đối của tia AB lấy điểm H sao cho ah=kc chứng minhh d k thẳng hàng
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho BD = BA. Gọi M là trung điểm
AD. a/Chứng minh . b/Vẽ tia BM cắt AC tại E. Chứng minh ED BD ⊥
c/ Trên cạnh MD lấy điểm I sao cho MI = ID. Qua I vẽ đường thẳng vuông góc với MD cắt cạnh ED tại K. Tư M vẽ
đường thẳng vuông góc với cạnh AB tại H. Chứng minh 3 điểm M; H; K thẳng hàng
Cho \(\Delta\)ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BM vuông góc với AD tại M, kẻ CN vuông góc với AE tại N. Gọi O là giao điểm của hai đường thẳng BM và CN. CMR: AO là tia phân giác góc DAE.
Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Cho tam giác ABC có AB<AC và D là trung điểm AC. Trên tia đối của tia DB lấy điểm E sao cho DE=DB
a, Chứng minh tam giác ADE = tam giác CDB và AE//BC
b, Từ E kẻ Ex vuông góc với AC tại M. Trên tia Ex lấy điểm N sao cho M là trung điểm EN. Chứng min DN=BD
c, Chứng minh BN vuông góc Ex