Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Violet Chomoldeley Montm...

cho tam giác ABC có AC < BC. Tia phân giác của ACB cắt AB tại D. Trên cạnh BC lấy E sao cho CE = AC.

a) CMR: CAD và CED bằng nhau.

b) Kéo dài CA và DE cắt nhau tại F. CMR: EF = AB

c) Gọi I là giao điểm của AE và CD. CMR: CI vuông góc AE

d) Từ A kẻ AK song song DE (K thuộc CD). CMR KE song song AB.

huhu mọi người ơi cần gấp. Ai bt ý nào thì cứ làm ở dưới giúp mình

Nguyễn Lê Phước Thịnh
25 tháng 10 2020 lúc 20:16

a) Xét ΔACD và ΔECD có

CA=CE(gt)

\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACB}\), E∈BC)

CD chung

Do đó: ΔACD=ΔECD(c-g-c)

\(\widehat{CAD}=\widehat{CED}\)(hai góc tương ứng)

b) Ta có: ΔACD=ΔECD(cmt)

⇒DA=DE(hai cạnh tương ứng)

Ta có: \(\widehat{CAD}+\widehat{FAD}=180^0\)(hai góc kề bù)

\(\widehat{CED}+\widehat{BED}=180^0\)(hai góc kề bù)

\(\widehat{CAD}=\widehat{CED}\)(cmt)

nên \(\widehat{FAD}=\widehat{BED}\)

Xét ΔADF và ΔEDB có

\(\widehat{FAD}=\widehat{BED}\)(cmt)

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDB}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDB(g-c-g)

⇒DF=DB(hai cạnh tương ứng)

Ta có: DA+DB=AB(D nằm giữa A và B)

DE+DF=EF(D nằm giữa E và F)

mà DA=DE(cmt)

và DB=DF(cmt)

nên AB=EF(đpcm)

c) Ta có: CA=CE(gt)

nên C nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra CD là đường trung trực của AE

⇔CD⊥AE

hay CI⊥AE(đpcm)


Các câu hỏi tương tự
Esther Emma
Xem chi tiết
concak pp
Xem chi tiết
Lê Ngọc Khánh Linh
Xem chi tiết
Hanna08
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Hằng Trần
Xem chi tiết
Bùi Quang Sang
Xem chi tiết
03.Trần Minh Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết