ΔAHB vuông tại H. Áp dụng định lý Pitago ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 (1)
ΔAHC vuông tai H. Áp dụng định lý Pitago ta có:
AC2 = AH2 + CH2
=> CH2 = AC2 - AH2 (2)
Lại có: AB < AC (GT) (3)
Từ (1) và (2) => BH < CH
ΔAHB vuông tại H. Áp dụng định lý Pitago ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 (1)
ΔAHC vuông tai H. Áp dụng định lý Pitago ta có:
AC2 = AH2 + CH2
=> CH2 = AC2 - AH2 (2)
Lại có: AB < AC (GT) (3)
Từ (1) và (2) => BH < CH
Cho tam giác ABC có AC > AB
a) Chứng minh góc ABC > góc ACB
b) Vẽ AH vuông góc BC (H thuộc BC). Chứng minh HC>HB
c) Lấy điểm E trên đoạn thẳng AH. So sánh độ dài đoạn BE và BA
d) So sánh độ dài đoạn CE và CA
e)So sánh độ dài đoạn EB và EC
Cho tam giác ABC vuông tại A . kẻ AH vuông góc vs BC . Kẻ HP vuoog góc vs AB và kéo dài để có PE = PH . Kẻ HQ vuoog góc vs AC và kéo dài để có QF = QH
1) Cm : tam giác APE = tam giác APH , tam giác AQH = tam giác AQF
2) Cm : A là trung điểm của EF .
3) Cm : BE//CF
4) Cho AH = 3cm , AC = 5 cm . tính HC , EF
Cho tam giác ABC có AB < AC, phân giác AD,trung tuyến AM,đường cao AH.
a) So sánh độ dài của HB và HC
b) Chứng minh rằng HAC > \(\dfrac{A}{2}\)
c) Nhận xét gì về vị trí của các tia AH,AD,AM
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
Cho tam giác ABC, có AH vuông góc với BC tại H. Chứng minh rằng: a)AH<1/2(AB + AC); b) Kẻ BK vuông góc AC tại K, CL vuông góc với AB tại L. Chứng minh: AH + BK + CL < AB + BC + CA.
đang cần gấp
Cho tam giác ABC vuông tại A.Từ A kẻ AH vuông BC.Tia phân giác góc HAC cắt BC tại D.Từ D kẻ DK vuông AC. Chứng minh a)AH=AK b)AC+AB<BC+AH
Cho tam giác ABC vuông tại A. Vẽ AH vuông BC( H thuộc BC). Cho biết BAH < CAH. Hãy so sánh:
a. B và C
b. HB với HC
Cho tam giác ABC vuông tại B. Trên cạnh BC lấy các điểm D và E (D nằm giữa B và E).
a) So sánh độ dài các đoạn thẳng AB, AD, AE, AC
b) Vẽ BI, BK, BH lần lượt vuông góc với AD, AE, AC. So sánh các góc ABH, ABK, ABI.