Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có: I là tâm đường tròn ngoại tiếp ΔHAB(gt)
mà ΔHAB vuông tại H(gt)
nên I là trung điểm của AB
\(\Leftrightarrow AI=\dfrac{AB}{2}=\dfrac{3}{2}=1.5\left(cm\right)\)
Ta có: K là tâm đường tròn ngoại tiếp ΔHAC(gt)
mà ΔHAC vuông tại H(gt)
nên K là trung điểm của AC
\(\Leftrightarrow AK=\dfrac{AC}{2}=\dfrac{4}{2}=2\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAKI vuông tại A, ta được:
\(AK^2+AI^2=IK^2\)
\(\Leftrightarrow KI^2=1.5^2+2^2=6.25\)
hay KI=2,5(cm)
Vậy: KI=2,5cm