Cho tam giác ABC vuông tại A, M là một điểm trên AC. Đường tròn đường kính CM cắt BM và BC lần lượt tại D và N; AD cắt đường tròn tại S. Chứng minh rằng:
a) A, B, C, D cùng thuộc một đường tròn.
b) CA là phân giác góc SCB.
c) Các đường AB, MN, CD đồng quy.
GIÚP MÌNH VỚI MAI MÌNH THI RÙIIII
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O các đường cao AM , BN cho tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại D và E Chứng minh A, tứ giác MHNC nội tiếp đường tròn B, CD = CE C, CB là tia phân giác của góc HCD
Cho tam giác cân ABC (AB = AC) nội tiếp đường tròn (O). Các đường phân giác của hai góc B và C cắt nhau ở E và cắt đường tròn lần lượt ở F và D. Chứng minh rằng tứ giác EDAF là một hình thoi ?
Cho tam giác ABC cân tại A, góc A nhọn.đường vuông góc với AB tại A cắt đường thẳng BC ở D .kẻ DF vuông góc với AC tại E.gọi M là trung điểm của BC đường thẳng AM và DE cắt nhau tại F chứng minh: Tứ giác AMED nội tiếp 1 đường tròn Giúp mik bài này với!!
Cho tam giác ABC nội tiếp đường tròn tâm O, biết \(\widehat{A}=32^0,\widehat{B}=84^0\). Lấy các điểm D, E, F thuộc đường tròn () sao cho AD = AB, BE = BC, CF = CA.
Hãy tính các góc của tam giác DEF ?
Cho tam giác ABC ( AB < AC ) nội tiếp đường tròn tâm O. Lấy D trên cạnh BC. AD cắt cung BC ở E. Chứng minh rằng
a) góc AEC > góc AEB
b) AB . CD = AD . CE
giúp tớ với ạ
Cho tam giác ABC có 3 góc nhọn nội tiếp (O) các đường cao BH,CK cắt nhai tại I cà cắt (O) tại D và E
Chứng minh rằng: cung AE = cung AD
Cho tam giác ABC nội tiếp đường tròn (O). Trên cung nhỏ BC của đường tròn (O), lấy điểm M. Gọi D, E, F lần lượt là hình chiếu vuông góc của M lên các đường thẳng BC, CA, AB. Chứng minh rằng ba điểm D, E, F thẳng hàng.
va AD. Citing minh MN // AC. Bài 6: (2,5 điểm) Cho tam giác ABC vuông tại A, đường tròn tâm O đường kinh AB cắt BC tại D. a) Chứng minh AC^ angle = CD .Cl b) Gọi I là trung điểm của BD, tiếp tuyến tại D của đường minh rằng FB là tiếp tuyến của (O). tròn (O) cắt AC tại E và cắt tia OI tại F. Chứng c) Giả sử AB = 6 cm, AC = 8 cm. Tính diện tích của tứ giác ABFE.