a: Sửa đề: ΔAEB
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
Xét ΔADE và ΔACH có
góc DAE chung
góc ADE=góc ACH
=>ΔADE đồng dạng với ΔACH
a: Sửa đề: ΔAEB
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
Xét ΔADE và ΔACH có
góc DAE chung
góc ADE=góc ACH
=>ΔADE đồng dạng với ΔACH
cho tam giác ABC. M là điểm nằm bên trong tam giác. trên MA, MB,MC lần lượt lấy các điểm D,E,F sao cho MD= 1/2 DA, ME= 1/2 BE, MF= 1/2 CF. chứng minh tam giác DEF đồng dạng với tam giác ABC? tìm tỉ số đồng dạng
Tam giác ABC có ba góc nhọn và có trực tâm là điểm H. Gọi K, M, N thứ tự là trung điểm của các đoạn thẳng AH, BH, CH.
Chứng minh rằng tam giác KMN đồng dạng với tam giác ABC với tỉ số đồng dạng \(k=\dfrac{1}{2}\) ?
Cho hình tam giác ABC có ba góc nhọn (AB<AC). Kẻ đường cao BE và đường cao CF cắt nhau ở H. Gọi K là giao điểm của AH và BC.
a, CM tam giác ABK đông dạng với tam giác ABF, từ đó suy ra BA.BF=BK.BC
b, CM tam giác BKF đồng dạng tam giác BAC
c, Gọi O và I lần lượt là trung điểm của BC và AH. Tia EF cắt AK và BC lần lượt tại N và D. CM: ON vuông góc DI
các huynh đài ơi chỉ bài đệ với: cho tam giác ABC vuông tại A đường cao AI, AC=12cm, BC=13cm.
a ) chứng minh tam giác IAC đồng dạng với tam giác ABC.
b) BK là phân giác góc B( K thuộc AC) cách AI tại M, tính AB,IC,AK.
c) tính S tam giác BMI, và tam giác ABK
Cho tam giác nhọn ABC, kẻ đường thẳng BE và CF( E thuộc A, F thuộc AB)
1, Chứng minh tam giác ABC đồng dạng với tam giác ACF
2, Kẻ EH vuông góc với BC tại H. Chứng minh EH2= HB.HC
3, Lấy M là trung điểm của BC, N là trung điểm của EC. Qua C kẻ đường thẳng vuông góc với BC cắt đường thẳng MN tại D. BD cắt EH tại I. Chứng minh I là trung điểm của EH
Help me
Cho tam giác ABC có các đường cao AD,BE,CF cắt nhau ở H.CMR :
a.tam giác BDF đồng dạng với tam giác BAC và tam giác CDE đồng dạng với tam giác CABb.BF.BA+CE.CA=BC^2Cho tam giác ABC vuông tại A, AB = 6 cm, AC =8 cm. Từ B kẻ tia Bx // AC (Tia Bx thuộc nửa mặt phẳng chứa C, bờ AB), tia phân giác của góc BAC cắt BC tại M, cắt tia Bx tại N.
a)Chứng minh tam giác BMN đồng dạng với tam giác CMA
b)Chứng minh AB/AC = MN/AM
: Cho tam giác ABC vuông tại A, đường cao AH.
a. Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BC.CH
a.Tia phân giác ABC cắt AH tại E, AC tại F. Chứng minh AB.FC= CB.AF
a) Nêu tất cả các cặp tam giác đồng dạng
b) Đốivới mỗi cặp tam giác đồng dạng, hãy viết tỉ số đồng dạng tương ứng