a. Gọi giao điểm của AK và BN là Q
Ta có:
ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘
Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘
ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)
⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^
Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)
⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘
⇒ˆAQM=90∘⇒AQM^=90∘
Hay AK vuông góc với BN.
b. Theo câu a: AK vuông góc với BN tại Q
Mà BQ là phân giác của góc ˆIBKIBK^
Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B
Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.
Chứng minh tương tự: Q là trung điểm của MN
Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK
Vậy MINK là hình thoi.