Tớ nói với cậu chỗ tin nhắn rồi .... nếu không hiểu thì báo tớ,,,,, tớ ns tiếp cho
Tớ nói với cậu chỗ tin nhắn rồi .... nếu không hiểu thì báo tớ,,,,, tớ ns tiếp cho
Cho tam giác ABC cân tại A. Các đường phân giác BE và CF. Chứng minh :
a) góc ABE = góc ACF
b) ∆AFE cân
c) Tứ giác BFEC là hình thang cân có đáy nhỏ bằng cạnh bên.
Bài 1:
cho tam giác ABC cân tại A các đường cao BE vàCF chứng minh rằng tứ giác BFEC là hình thang cân ?
Bài 2 :
Chứng minh rằng : tứ giác ABCD có góc D = góc C và AD = BC thì tứ giác đí là hònh thang cân ?
Cho tam giác ABC cân tại A. Đường trung tuyến AM, BN. Chứng minh :
a) Tam giác AMN cân.
b) Tứ giác BNMC là hình thang cân.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tam giác ABC cân tại A. Gọi E,F và D là trung điểm của AB, BC,AC. Chứng minh:
a, Tứ giác BCDE là hình thang cân
b, Tứ giác BEDF là hình bình hành
c, Tứ giác ADFE là hình thoi
Cho tam giác ABC cân tại A. Đường trung tuyến AM, BN. Chứng minh:
a) Tam giác AMN cân.
b) Tứ giác BNMC là hình thang cân .
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Cho tam giác MNQ cân tại M có QH và NL là 2 đường phân giác.
a) Chứng minh: NL = QH
b) Chứng minh: HLQN là hình thang cân.
c) Cho góc NMQ = 120 độ. Tính các góc của hình thang
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D thuộc AC, E thuộc AB). Chứng minh rằng BEDC là hình thang cân có đáy nhò bằng cạnh bên.