a/ Xét tam giác ABE và tam giác ACD có:
AE = AD (gt)
AB = AC (tam giác ABC cân tại A)
^BAC chung
=> Tam giác ABE = Tam giác ACD (c - g - c)
=> BE = CD (cặp cạnh tương ứng)
b/ Vì tam giác ABE = tam giác ACD (cmt)
=> ^ABE = ^ACD (cặp góc tương ứng) (1)
Vì tam giác ABC cân tại A (gt) => ^ABC = ^ACB (TC tam giác cân) (2)
Lại có: ^ABC = ^ABE + ^EBC
^ACB = ^ACD + ^ECB (3)
Từ (1) (2) (3) => ^EBC = ^ECB => Tam giác BIC cân tại I
c/ Xét tam giác ADE có: AD = AE (tam giác ABE = tam giác ACD)
=> Tam giác ADE cân tại A
=> ^ADE = ^AED = \(\dfrac{180-gócA}{2}\)
Tam giác ABC cân tại A (gt) => ^ABC = ^ACB = \(\dfrac{180-gócA}{2}\)
=> ^ADE = ^AED = ^ABC = ^ACB
Ta có: ^ADE = ^ABC (cmt)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)