a) Xét \(\bigtriangleup ABC\) cân tại A, có:
AD là đường cao của cạnh BC
=> AD cũng là đường trung tuyến của cạnh BC
=> D là trung điểm của cạnh BC
Hay: BD = CD
b) Ta có: AD là đường cao của \(\bigtriangleup ABC\) cân tại A
Nên: AD cũng là đường phân giác của \(\bigtriangleup ABC\)
=> \(\widehat{BAD}=\widehat{CAD}\)
Hay: \(\widehat{HAD}=\widehat{KAD}\)
Xét \(\bigtriangleup AHD\) và \(\bigtriangleup AKD\):
Ta có: \(\left\{\begin{matrix} \widehat{AHD}=\widehat{AKD}=90^{\circ}(DH\perp AB,DK\perp AC) & & & \\ AD:chung & & & \\ \widehat{HAD}=\widehat{KAD}(cmt) & & & \end{matrix}\right.\)
Vậy: \(\bigtriangleup AHD=\bigtriangleup AKD(ch-gn)\)
=> DH = DK
c) \(\bigtriangleup AHD=\bigtriangleup AKD(cmt)\)
=> AH = AK
=> \(\bigtriangleup AHK\) cân tại A
=> \(\widehat{AKH}=\frac{180^{\circ}-\widehat{BAC}}{2}\)
Mà: \(\widehat{ACB}=\frac{180^{\circ}-\widehat{BAC}}{2}\)
Nên: \(\widehat{AKH}=\widehat{ACB}\)
(nằm ở vị trí đồng vị)
=> HK // BC
d) Ta có: BD = DC = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\) cm
Xét \(\bigtriangleup ADB\) vuông tại D (AD đường cao), ta có:
\(AD^2=AB^2-BD^2\left(Py-ta-go\right)\)
\(AD^2=10^2-6^2=64\)
\(\Rightarrow AD=\sqrt{64}=8cm\)