Cho tam giác ABC có AB < AC . Trên cạnh AC lấy điểm I sao cho góc AIB = góc ABC . Phân giác góc A cắt BI tại K , cắt BC tại D
a) Chứng minh : tam giác ABD và tam giác AIK đồng dạng
b) Cho AB = 5cm , AC = 8, BD = . Tính DC ?
c ) Gọi M là trung điểm BC . Qua M kẻ đường thẳng song song với AD , cắt AC tại E , cắt AB tại F . C/m : EC = BF
Giúp mìnk vs ạ mìnk đg cần gấp<3
Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm và 9 cm
Gọi D và E là hình chiếu của H trên AB và AC
a) Tính độ dài DE
b) Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N. Chứng minh M là trung điểm của BF, N là trung điểm của CH
c) Tính diện tích tứ giác DENM
giúp mk câu c vớiiiiiiiiii
cho tam giác ABC cân ( góc A < 90 độ) đường cao AH. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Kẻ BM vuông góc AD ( M thuộc AD)
tam giác AHD đồng dạng với tam giác BMD
DB. DH = DA ^2/2
c, Tia MH cắt tia AC tại N. Chứng minh : tam giác ADB đồng dạng với tam giác NCH và CH = CN
cho tam giác ABC vuông tại A,đường cao AH.
a. CM tam giác ABH đồng dạng với tam giác CBA
b.Gọi E là điểm tùy ý trên cạnh AB, ĐƯờng thẳng đi qua H và vuông góc với HEcawts AC tại F. Tìm vị trí của điểm E trên cạnh AB để tam giác EHFcó diện tích nhỏ nhất
cho tam giác ABC vuông tại A, AC=4cm, BC=6 cm.Kẻ tia Cx vuông góc với BC ( tia Cx và điểm A nằm khác phía với đường thẳng BC).Lấy trên Cx điểm D sao cho BD=9 cm.a)cm tam giác BAC và tam giác DCB đồng dạng B)cm BD//AC
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông cân tại A.Trên cạnh AB lấy H (H khác A và B) vẽ qua điểm B đường thẳng d vuông góc với đường thẳng CH tại D và cắt đường thẳng AC tại I.
a,Chứng minh tam giác IDC đồng dạng với IAB
b,Chứng minh tam giác IDA đồng dạng với ICB.Tính số đo góc IDA
Cho tam giác ABC, các đường phân giác AD, BE, CF. Gọi M là giao của BE và DF, N là giao của DE và CF a) Kẻ MI và NK sống song với AD ( I thuộc AB, K thuộc AC) Cm tam giác AIM đồng dạng với tam giác AKN b) Cm góc FAM = góc EAN
Cho tam giác ABC(AB<AC) có đường cao AH . Gọi I là trung điểm của AC .Kẻ IN vuông góc với BC(N thuộc BC) . a) Chứng minh tam giác ABC đồng dạng với tam giác NIC và CA.CI=CB.CN . b) Chúng minh AB2=BH.BC=NB2-NC2