c) vì \(CE\perp AB,BD\perp AC\)
nên CE và AC là 2 đường cao của tam giác , chúng giao nhau ở I nên I là trực tâm => AH là đường cao sẽ đi qua trực tâm
Vậy AH,CE,BD đồng quy tại 1 điểm
c) vì \(CE\perp AB,BD\perp AC\)
nên CE và AC là 2 đường cao của tam giác , chúng giao nhau ở I nên I là trực tâm => AH là đường cao sẽ đi qua trực tâm
Vậy AH,CE,BD đồng quy tại 1 điểm
cho tam giác ABC cân tại A từ B và C lần lượt BD và CE vuông góc với các đường thẳng AC và AB tại D và E .Gọi AH là đường cao của tam giác ABC
a)tam giác ABD=tam giác ACE
b)nếu ABD=40 độ thì góc BAC=?
c)CMR ba đường AH,BD,CE đồng qui tại một điểm
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC, vẽ phía ngoài tam giác ABC các tam giác vuông tại A là: tam giác ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, OM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng:
a, Tam giác MAE = tam giác MCB
b, AE = À
c, Ba điểm A,E,F thẳng hàng
Cho tam giác ABC vuông tại A có AB = AC . Qua A kẻ đường thẳng xy ( B, C nằm cùng phía đối với xy ) Kẻ BD và CE vuông góc với xy . Chứng minh rằng :
a ) Tam giác BAD = Tam giác ACE
b ) DE = BD + CE
Cho tam giác ABC có Ab<AC. Trê 2 cạnh AB,AC. LẤy tương ứng 2 điểm D và E sao cho BD=CE. Gọi M,N,I lần lượt là trung điểm BC,DE,CD. Đường thẳng MN cắt AB và AC tại P và Q. Chứng minh:
a, tam giác MIN cân
b, tam giác APQ cân
c, MN song song đường phân giác góc A của tam giác ABC
Cho tam giác ABC vuông góc tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC và trên tia đối HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB và trên tia đối của tia NH lấy điểm D sao cho NH=ND
a) Chứng minh 3 điểm D, A, E thẳng hàng
b) Chứng minh MN//DE
c) Chưng minh BD//CE
d) Chưng minh tam giác DHE là tam giác đều
P/s Giải nhanh giùm vs đg gấp
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC vuông tại A, biết góc ACB = 40 độ
a) Tính góc ABC
b) Phân giác của góc B cắt AC tại D. Lấy E thuộc BC sao cho BE = BA.
Chứng minh: Tam giác BDA = tam giác BDE
c) Qua B kẻ đường thẳng xy vuông góc với AB. Từ A kẻ đường song song với BD, cắt xy tại K
Chứng minh: AK = BD
d) Qua C kẻ đường vuông góc với BD tại H và cắt tia BA tại F.
Chứng minh: Ba điểm E; D; F thẳng hàng
( Các bạn biết giải câu d xin ghi cách giải giùm tớ. Cảm ơn)
Cho tam giác ABC cân tại A ( góc A < 90 độ ). Điểm D nằm giữa A và C, điểm E nằm giữa A và B
cm
a) Nếu EA = EB và DA = DC thì BD = CE
b) Nếu góc ABD = góc CBD và góc ACE = góc BCE thì BD = CE
c) Nếu BD vuông góc với AC và CE vuông góc với AB thì BD = CE
mỗi bài vẽ một hình xin làm ơn giúp mình đi mình đang cần gấp