Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Giang

cho tam giac ABC can tai A tren tia doi cua tia BA lay diem D tren tia doi cua tia CA lay diem E sao cho

BD=CE goi I la giao diem cua BE va CD

a) chung minh rang |IB=IC ,ID=IE

b)chung minh rang BC song song voi DE

c) goi M la trung diem cua BC chung minh rang ba diem A,M,I thang hang

nguyen thi vang
1 tháng 3 2018 lúc 16:25

A B C D E M I

a) Ta có : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{CBD}=180^o\\\widehat{ACB}+\widehat{BCE}=180^o\end{matrix}\right.\left(kềbù\right)\)

Lại có : \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)

Nên : \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)

\(\Leftrightarrow\widehat{CBD}=\widehat{BCE}\)

Xét \(\Delta BDC,\Delta CBE\) có :

\(BC:Chung\)

\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

=> \(\Delta BDC=\Delta CBE\left(c.g.c\right)\)

Xét \(\Delta BID,\Delta CIE\) có :

\(\widehat{BID}=\widehat{CIE}\) (đối đỉnh)

\(BD=CE\left(gt\right)\)

\(\widehat{BDI}=\widehat{CEI}\) (do \(\Delta BDC=\Delta CBE\))

=> \(\Delta BID=\Delta CIE\left(g.c.g\right)\)

=> \(\left\{{}\begin{matrix}IB=IC\left(\text{2 cạnh tương ứng}\right)\\ID=IE\left(\text{2 cạnh tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{tam giác ABC cân tại A}\right)\\BD=CE\left(gt\right)\end{matrix}\right.\)

Lại có : \(\left\{{}\begin{matrix}AB+BD=AD\\AC+CE=AE\end{matrix}\right.\)

Suy ra : \(AB+BD=AC+EC\)

\(\Leftrightarrow AD=AE\)

=> \(\Delta ADE\) cân tại A

Ta có : \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> \(BC//DE\rightarrowđpcm\)

c) Xét \(\Delta ABM,\Delta ACM\) có :

\(AB=AC\) (\(\Delta ABC\) cân tại A)

\(\widehat{ABM}=\widehat{ACM}\) (\(\Delta ABC\) cân tại A)

BM = CM (M là trung điểm của BC)

=> \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

=> AM là tia phân giác của \(\widehat{A}\) (3)

Ta chứng minh : \(\Delta ABI=\Delta ACI\)

Suy ra : \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)

=> AI là tia phân giác của \(\widehat{A}\) (4)

Từ (3) và (4) => \(AM\equiv AI\)

=> A, M, I thẳng hàng.

=> đpcm


Các câu hỏi tương tự
Tran Thi Minh Thu
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
tran thi lan huong
Xem chi tiết
Trần Minh Nhật Anh
Xem chi tiết
Nguyễn Ngọc Huỳen
Xem chi tiết
linh nguyen
Xem chi tiết
linh nguyen
Xem chi tiết
UG_Suckszzz
Xem chi tiết
Ngoc My Nguyen
Xem chi tiết