Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh
AB sao cho AD = AE.
a) So sánh góc ABD và ACE
b) Gọi I là giao điểm của BD và CE. Tam giác IBC là tam giác gì? Tại sao?
c) Chứng minh AI là phân giác của góc BAC
d) Chứng minh: ED // BC. Từ đó chứng minh: AI vuông góc với BC
e) Chứng minh AI là đường trung trực của BC
a) Xét △ AED có AE=AD nến △AED cân tại A
⇒\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\)
△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC
Xét △DEB và △EDC có :
\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)
ED : cạnh chung
EB=DC \(\left(cmt\right)\)
Do đó : △DEB = △EDC \(\left(c.g.c\right)\)
Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\)
b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\)
Vậy △IBC cân tại I
c) Xét △AIB và △AIC có :
AB=AC(gt)
\(\widehat{ABD}=\widehat{ACE}\) (câu a)
BI=CI(vì △IBC cân tại I)
Do đó :△AIB=△AIC\(\left(c.g.c\right)\)
⇒\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\)
d) Xét △AED và △ABC có :
A : chung
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\)
⇒\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC
Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC
e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC
a, Xét tam giác ABD và tam giác ACE ta có :
^A _ chung
^AB = AC ( gt )
AD = AE ( gt )
Vậy tam giác ABD = tam giác ACE ( g.c.g )
b, => ^ABD = ^ACE ( 2 góc tương ứng )
mà tam giác ABC cân tại => ^B = ^C
=> ^B - ^ABD = ^DBC
=> ^C - ^ACE = ^ECB
=> ^DBC = ^ECB
Xét tam giác IBC có : ^DBC = ^ECB
nên IBC là tam giác cân tại I
c, Xét tam giác ABI và tam giác ACI ta có :
^ABI = ^ACI ( cmt )
AB = AC ( gt)
IA _ chung
Vậy tam giác ABI = tam giác ACI ( c.g.c )
=> ^BAI = ^CAI ( 2 góc tương ứng )
Vậy AI là phân giác ^BAC
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )
mà AI là phân giác của tam giác ABC cân tại A
=> AI đồng thời là đường cao
=> AI vuông BC ; ED // BC (cmt)
=> AI vuông ED
e, Xét tam giác ABC cân tại A
AI là đường cao, phân giác
đồng thời AI là đường trung trực đoạn BC