a) Xét ΔAHB và ΔAHC có :
\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)
AB = AC (ΔABC cân tại A)
\(\widehat{AHB}=\widehat{AHC}\left(=90độ\right)\)
Suy ra : ΔAHB = ΔAHC (ch - gn)
Ta có đpcm
b) Từ câu a có :
ΔAHB = ΔAHC (ch - gn)
=>BH = HC (2 cạnh tương ứng)
=> \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét ΔACH cân tại H (AH ⊥BC) có :
Áp dụng định lí PY - TA - GO :
\(AH^2=AB^2-BH^2\)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
Ta có đct
c) Xét ΔABH và ΔMBH có :
\(AH=MH\left(gt\right)\)
\(\widehat{AHB}=\widehat{MHB}\left(=90độ\right)\)
BH : cạnh chung
=> ΔABH = ΔMBH (c-g-c)
=> AB = BM (2 cạnh tương ứng)
Do đó : ΔABM cân tại B
Ta có đpcm
d)Xét ΔACH và ΔMBH có :
\(AC=BM\left(=AB\right)\)
BH = HC (chứng minh trên)
AH = HM (gt)
=> ΔACH = ΔMBH (c.c.c)
=> \(\widehat{HAC}=\widehat{HMB}\) (2 góc tương ứng)
Mặt khác, thấy : 2 góc này ở vị trí so le trong
Suy ra : BM // AC
Ta có đpcm