a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
góc B chung
Do đó: ΔBEC\(\sim\)ΔBDA
b: Xét ΔDHC vuông tại D và ΔDCA vuông tại D có
\(\widehat{DCH}=\widehat{DAC}\)
Do đó: ΔDHC\(\sim\)ΔDCA
Suy ra: DH/DC=DC/DA
hay \(DC^2=DH\cdot DA\)
a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
góc B chung
Do đó: ΔBEC\(\sim\)ΔBDA
b: Xét ΔDHC vuông tại D và ΔDCA vuông tại D có
\(\widehat{DCH}=\widehat{DAC}\)
Do đó: ΔDHC\(\sim\)ΔDCA
Suy ra: DH/DC=DC/DA
hay \(DC^2=DH\cdot DA\)
Cho tam giác ABC vuông tại A, đường cao AH
a) CM: tam giác ABC đồng dạng tam giác HBA, từ đó suy ra: AB.AH = BH.AC
b) Tia phân giác góc ABC cắt AH tại I (i). Biết BH=3cm; AB=5cm. Tính AI (ai), IH (ih)
c) Tính diện tích tam giác AHB
Cho tam giác ABC vuông tại A, đường cao AH ,H thuộc BC
a) CM tam giác ABC đồng dạng với tam giác HAC
b) CM tam giác HBA đồng dạng với tam giác HAC từ đó suy ra AH^2=BH.HC
c) Kẻ đường p/g BE của tam giác ABC (E thuộc AC).Biết BH=9cm, HC=16cm.Tính độ dài các đoạn thẳng AE,EC
Cho tam giác ABC vuông tại A, đường cao AH
a) CM: tam giác ABC đồng dạng tam giác HBA, từ đó suy ra: AB.AH = BH.AC
b) Tia phân giác góc ABC cắt AC tại I (i). Biết AB=9cm; AC=12cm. Tính AI (ai), BC
c) Tính tỉ số diện tích tam giác HAB và tam giác HCA
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BH.BC
b/ Vẽ tia phân giác của góc ABC cắt AH tại I, cắt AC tại E. Chứng minh IH/IA = BI/BE
c/ Từ E kẻ đường thẳng song song với AH cắt tia BA tại P. Gọi M là giao điểm của PE và CB. Chứng minh PC2 = AH.PM + CE.CA
Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao AD, BE, CF cắt nhau tại H .
a/ Chứng minh: tam giác AEB đồng dạng tam giá AFC, từ đó suy ra AF.AB = AE.AC
b/ Chứng minh: góc AEF = góc ABC
c/ Vẽ DM vuông góc với AB tại M.Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh: DN vuông góc với AC .
d/ Gọi I là trung điểm của HC. Chứmg minh tam giác FAC đồng dạng với tam giác FHB và FA.FB = FI2 - El2
am giác ABC vuông tại A ,AB =6cm,BC=10cm,đường caoAh a) chứng minh tam giác AHB đồng dạng với tam giác CAB,tam giác AHC đồng dạng với tam giác BAC,tam giác AHB đồng dạng với tam giác CHA b) kẻ phân giác góc b cắt AC tại D tính độ dài AD và DC c) kẻ AH cắt BD tại I chứng minh rằng DA/DC=BA/BF
cho tam giác ABC vuông tại A (AB<AC),đường ca AH(H thuộc BC).
1 CM: tam giác HBA đồng dạng tam giác ABC và BA^2=BH.BC.
2.kẻ phân giác Be cuat góc ABC(E thuộc AC ) , BE cắt AH tại I .CM tam giác HBI đồng dạng tam giác ABE.
3. CM AI=AE
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD a, Tính độ AD, DC b, CM: AD.BI=BD.HB c, Chứng minh tam giác AID là tam giác cân ? d, CM: IH trên IA = AD trên DC
Tam giác ABC có 3 góc nhọn, đường cao BD và CE cắt nhau tại H. Chứng minh:a) tam giác ADB đồng dạng với tam giác ACE.b) AB = 3cm, AC=5m, AD=2cm. Tính độ dài AE