3. cho tam giác ABC ( AB<AC) hai đường cao BEvà CFgặp nhau tại H, các đường thẳng kẻ từ B song song vs CF và từ C song song vs BEgặp nhau tại D . Chứng minh :
a) tam giác ABE~tam giác ACF
b) AE.AC=AB.AF
c) gọi I là trung điểm của BC . Chứng minh H, I , D thẳng hàng
cho tam giác abc, các đường cao bd, ce cắt nhau tại h. đường vuông góc với ab tại b và đường vuông góc ac tại c cắt nhau ở k. gọi m là trung điểm của bc
a, cm tam giác adb đồng dạng tam giác aec
b, cm he.hc=hd.hb
c, cm h, k, m, thẳng hàng
d, tam giác abc phải có điều kiện gì thì tam giác bhck là hình thoi? hình chữ nhật?
Cho tam giá MNP vuông ở M. Vẽ đường thẳng qua M và song song với đường thẳng NP, NH vuống góc với d tại H a, Cm tam MNP đồng dạng vs tam giác HMN b, Gọi K là hinhg chiếu của P trên d. Cm MH.MK=NH.PK c, Gọi Q là giao điểm của 2 đoạn thẳng MN và HP. Tính độ dài đoạn thẳng HM và diện tích tam giác QNP khi MN=6, MP=8, NP=10 Giupa tuiii đii mà chìu tui thi rùiii 🥺
Cho △ABC nhọn AB<AC và đường cao BE,CF cắt nhau tại H
a)Chứng minh △ABE∼△ACF và AF.AB=AE.AC
b)Chứng minh:FA.FB=FH.FC
c)Đường thẳng qua B và song song với FE cắt AC tại M.Chứng minh :△BCF∼△MBE
d)Gọi I là trung điểm của BM,D là giao điểm của EI và BC.Chứng minh rằng :ba điểm A,H,D thẳng hàng
cho tam giác ABC vuông tại A ( AB < AC ) . từ trung điểm M của BC vẽ đường thẳng vuông góc với BC cắt AC tại N và cắt tia BA tại E
a, CM tam giác ABC đồng dạng với MBE
b, CM BC^2 = 4MN.ME
c, cho AB =9cm , AC=12cm . tính ME , BE
d, từ M kẻ đường thẳng song song với BE cắt CE tại F . tính V hình lăng trụ đứng , đáy là tam giác CMF và chiều cao là 10 cm
Cho tam giác nhọn abc có các đường cao AD,BE,CF cắt nhau tại H.Gọi K là giao điểm của AH,EF,N là trung điểm AH . Đường thẳng A song song với BN cắt BC tại M.Gọi P là giao điểm Mk và AB
a)CM tam giác AEF đồng dạng tam giác ABC
b)CM EB là phân giác góc DEF
Cho ΔABC vuông tại A, đường cao AH; AB= 21 cm, AC=28cm. Tia phân giác của góc A cắt BC tại D. Từ H kẻ đường thẳng song song với AC cắt AB tại M, đường thẳng song song với AB cắt AC tại N
a) Tứ giác AMHN là hình gì? Vì sao?
b) Tính độ dài BC, AH
c) Chứng minh ΔBHA ~ ΔAHC. Tính tỉ số diện tích ΔBHA ~ ΔAHC
d) Tính độ dài các đoạn thẳng CD và BD
e) Chứng minh: \(\dfrac{AM}{AB}+\dfrac{AN}{AC}=1\)
Cho tam giác ABC nhọn AB<AC và đường cao BE, CF cắt nhau tại H
a) Chứng minh : tam giác ABE ~ tam giác ACF và AF.AB=AE.AC
b) Chứng minh : FA.FB=FH.FC
c) Đường thẳng qua B và song song với FE cắt AC tại M . Chứng minh rằng : tam giác BCF ~tam giác MBE
d) Gọi I là trung điểm cảu BM , D là giao điểm của BN , D là giao điểm của EI và BC . Chứng minh rằng : bà điểm A, H ,D thẳng hàng
MK làm được câu a rồi còn câu b c, d không cần làm chi tiết chỉ cần làm ngắn gọn là đc
Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.