b2.6:cho tam giác abc ,o là điểm cách đều 3 cạnh của tam giác ,trên tia bc lấy m sao cho bm=ba .trên tia cb lấy điểm n sao cho cn=ca . gọi d,e,f lần lượt là hình chiếu của o trên bc,ca,ab
chứng minh
a/ne=nf
b/tam giác mon là tam giác cân
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
cho tam giác ABC, các điểm M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, trên tia đối của tia NP lấy điểm D sao cho ND=NP.
a) chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Cho tam giác ABC vuông tại A, có N và M lần lượt là trung điểm của AB và AC.
a) Chứng minh MNBC là hình thang.
b) Trên tia đối của tia MB lấy F sao cho MF = MB. Chứng minh AB song song CF.
c) Qua B vẽ đường thẳng vuông góc BC và cắt đường thẳng AC tại I. Chứng minh NI vuông góc BM.
giải giúp e với ạ
Cho tam giác ABC vuông tại A, có N và M lần lượt là trung điểm của AB và AC.
a) Chứng minh MNBC là hình thang.
b) Trên tia đối của tia MB lấy F sao cho MF = MB. Chứng minh AB song song CF.
c) Qua B vẽ đường thẳng vuông góc BC và cắt đường thẳng AC tại I. Chứng minh NI vuông góc BM.
Bài 2: Cho ∆ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Trên tia đối của tia CB lấy điểm E sao cho CE = CA. Kẻ BH ⊥ AD, CK ⊥ AE. Chứng minh rằng:
a) AH = HD b) HK // BC
Bài 3: Cho hình thang ABCD (AB // CD). Các đường phân giác của góc ngoài tại đỉnh A và D cắt nhau ở M. Các đường phân giác của góc ngoài tạo đỉnh B và C cắt nhau ở N.
a) Chứng minh: MN // CD
b) Tính chu vi ABCD biết MN = 4cm.
Cho tam giác ABC,các điểm M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC.Trên tia đối của tia NP lấy điểm D sao cho ND=NP
a)Chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Mình biết làm câu a,b rồi các bạn làm câu c được không ?
Cho tam giác ABC có ba góc nhọn gọi N,P là trung điểm của các cạnh AC,BC Trên tia đối của tia NP,Lấy điểm E sao cho NE=NP
Chứng minh tam giác AEM =tam giác CPN,EAN=PCN
Chứng minh AE // BC AE=1/2 BC
Từ C kẻ CK vuông góc với PN tại K. Từ K kẻ AH vuông góc với NE tại H Chứng minh AH=CK
Trên AE lấy điểm D Trên CPLấy điểm G sao cho AD=CG Chứng minh ba điểm D,G,N thảng hàng