Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh tứ giác BCEF nội tiếp
b) Gọi I là trung điểm của cạnh BC, K là điểm đối xứng của H qua I. Chứng minh ba điểm A,O,K thẳng hàng
Ai giải giúp mình câu b được không. Mình xin cảm ơn rất nhiều
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc đối
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét tứ giác BHCK có
I là trung điểm của đường chéo BC(gt)
I là trung điểm của đường chéo HK(H đối xứng với K qua I)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay BH//CK
Suy ra: BE//CK
mà BE⊥AC(gt)
nên CK⊥AC
⇔C nằm trên đường tròn đường kính AK
mà C,A cùng thuộc (O)
nên AK là đường kính của (O)
hay A,O,K thẳng hàng(đpcm)