Cho tam giác ABC có AB<AC, điểm D nằm giữa A và C sao cho góc ABD= góc ACB
a, CMR tam giác ABC đồng dạng với tam giác ADB, từ đo suy ra AB2=AC.AD.
b, Biết SABC=16cm2, AB=6cm, AC=8cm. Tính diện tích tam giác ADB.
c, Tia phân giác của góc A cắt BC tại E. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CMR MB.EC=MC.EB
cho tam giác abc vuông tại a có ab = 6cm bc =10cm. đg thẳng d vuông góc với bc tại b. gọi D là chân đường vuông góc kẻ từ A đến đường thẳng d . tính AC. c/m tam giác ADB đồng dạng vs tam giác BAC, tính AD!! Mình đang cần gấp. Mong các bn giúp !! :)))))
cho tam giác abc vuông ở a, có ab=6cm, ac=8cm, vẽ đường cao ah
a, tính bc
b, cm tam giác abc đồng dạng tam giác ahb
c, cm ab^2=bh.bc. tính bh, hc
d, vẽ phân giác ad của góc a( d thuộc bc). tính db
Cho tam giác ABC vuông tại A, đường cao AH.
a, Cm hai tam giác ABH và CBA đồng dạng với nhau.
b, Cm AB.AB= BH.BC
c, Gọi BI là đường phân giác của tam giác ABH.
Tính tỉ số AI/IH biết AB=3cm, AC=4 cm
d, Trên cạnh AC lấy M sao cho AM=1/3 Ac, trên tia đối tia HA lấy D sao cho HD=1/3HA. Chứng minh BD vuông góc DM
Cho tam giác ABC vuông tại A,AB=9cm,AC=12cm . Vẽ đường cao AH(H thuộc BC).
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA
b) Tính BC, AH.
c) Vẽ tia phân giác của góc A cắt BC tại D.Tính BD,CD,tính tỉ số diện tích của tam giác HAB và tam giác HCA
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
cho tam giác abc, các đường cao bd, ce cắt nhau tại h. đường vuông góc với ab tại b và đường vuông góc ac tại c cắt nhau ở k. gọi m là trung điểm của bc
a, cm tam giác adb đồng dạng tam giác aec
b, cm he.hc=hd.hb
c, cm h, k, m, thẳng hàng
d, tam giác abc phải có điều kiện gì thì tam giác bhck là hình thoi? hình chữ nhật?