Cho tam giác ABC nhọn có BC = a, AC = b, AB = c .Chứng minh rằng:
a, \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b, Có thể xảy ra sinA = sinB + sinC không ?
Cho tam giác ABC nhọn, AB=c, BC=a, AC=b. CMR: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Cho tam giác ABC nhọn
Cm \(\frac{BC}{sinA}\)=\(\frac{AB}{sinC}\)
cho tam giác ABC có 3 góc nhọn AB=c; AC=b, chứng minh:
a) \(\dfrac{SinA}{SinB}=\dfrac{a}{b}\)
b)\(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
Cho tam giác ABC nhọn. C/m: \(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
cho △ABC nhon AB = c; AC =b; BC = a. CM:\(\dfrac{a}{SinA}\)=\(\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
Cho tam giác ABC vuông tại A. Chứng minh\(\tan\frac{\beta}{2}=\frac{AC}{AB+BC}\)
1) Tính (không dùng máy tính xách tay)
a) Sin 28o - Cos 620 + Cotg 450
b)Tan 380 . Tan 520 . Tan 600
c) Sin2 23 + Sin2 67 - Sin2 45
d)[(sinB+sinC)2−1][(sinB+sinC)2−1] . (tanB+tanC) ( Với góc B+ góc C= 900)
(Cho biết : Cotg 450=1 ; sin 45=\(\frac{\sqrt{2}}{2}\) ; Tan60o= √33 )
2) Cho tam giác ABC vuông tại A , AH là đường cao, kẻ HD vuông góc với AB tại D
Chứng minh : a) AB3 = BD . BC3
b) \(\frac{BD}{BC}\) = Cos3 B
3) Cho tam giác nhọn ABC (BC= a ; AC=b) .Chứng minh rằng :
a) SABC= \(\frac{1}{2}\) bc.SinA
b) \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Giúp mình với chiều nay kiểm tra rồi !
Cho tam giác nhọn ABC . Gọi a,b,c là độ dài các cạnh đối diện với các đỉnh A,B,C .
a ) CM \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b) Có thể sẫy ra đẳng thức : sinA=sinB+sinC