Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Vũ Hải Yến

Cho tam giác ABC ( A < 90 độ), AB = AC.Kẻ CE vuông góc AB (E thuộc AB).Kẻ BD vuông góc AC,(D thuộc AC).Gọi O là giao điểm của BD và CE.
a)Chứng minh BD = CE
b)Chứng minh OE = OD và OB = OC
c)Chứng minh OA là phân giác BAC
Giúp mình nhé mình cần gấp

Thuỳ Linh Nguyễn
29 tháng 11 2023 lúc 23:05

`a)` 

Có `Delta ABC` cân tại `A(g t)`

`=>hat(ABC)=hat(ACB)`

`=>hat(EBC)=hat(DCB)`

Xét `Delta BEC` và `Delta CDB` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(BC-chung),(hat(EBC)=hat(DCB)(cmt)):}}`

`=>Delta BEC=Delta CDB(c.h-g.n)`

`=>CE=BD` ( 2 cạnh tương ứng )( dpcm )

`b)`

Có `Delta BEC=Delta CDB(cmt)`

`=>hat(C_1)=hat(B_1)` ( 2 góc tương ứng )

`=>Delta BOC` cân tại `O`

`=>OB=OC`(dpcm)

Xét `Delta OEB` và `Delta ODC` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(OB=OC(cmt)),(hat(O_1)=hat(O_2)(doi.di nh)):}}`

`=>Delta OEB=Delta ODC(c.h-g.n)`

`=>OE=OD`( 2 cạnh tương ứng )(dpcm)

`c)`

Có `Delta ABC` cân tại `A(g t)`

`=>AB=AC`

`=>A in ` trung trực của `Delta ABC(1)`

Có `OB=OC(cmt)`

`=>O in` trung trực của `Delta ABC(2)`

Từ `(1)` và `(2)=>OA` là trung trực `Delta ABC`

mà `Delta ABC` cân tại `A` 

Nên `OA` là phân giác `hat(BAC)` (dpcm)


Các câu hỏi tương tự
Nguyễn Cao Bảo Anh
Xem chi tiết
Vũ Anh Thư
Xem chi tiết
Bẻo Thyy
Xem chi tiết
trần thị thu hằng
Xem chi tiết
Tuệ Nhiên Nguyễn
Xem chi tiết
Lê Nguyễn Minh Thư
Xem chi tiết
Tuấn anh Lê
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Phi Yến
Xem chi tiết