Violympic toán 8

Hjhjhjhjhjhjhjhj

Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) 

với \(a_1;a_2;...;a_{100}\in Z\). Thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}\)

Cmr \(S-1⋮6\)

ntkhai0708
21 tháng 3 2021 lúc 10:52

Ta có: Xét với $a^3-a;a∈Z$

$=a(a^2-1)$

$=(a-1)a(a+1)$

Ta thấy với $a∈Z$ thì $(a-1);a;(a+1)$ là 3 số nguyên liên tiếp

$⇒$Có 1 số chia hết cho 3; ít nhất  1 số chia hết cho 2

$⇒\begin{cases}(a-1)a(a+1) \vdots 3\\ (a-1)a(a+1) \vdots 2\end{cases}$

$⇒(a-1)a(a+1) \vdots 6$ (do $(3;2)=1$)

Hay $a^3-a \vdots 6$

Vậy ta có: $a_1^3-a_1 \vdots 6;a_2^3-a_2 \vdots 6;a_100^3-a^100 \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3-(a_1+a_2+a_3+...+a_100) \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

Mà $a_1+a_2+a_3+...+a_100=2021^{2022}$

$2021 \equiv 5 (mod 6)$

$⇒2021^{2022} \equiv 5^{2022} (mod  6)$

Mà $5 \equiv -1 (mod 6)$

$⇒5^{2022} \equiv 1 (mod 6)$

$⇒2021^{2022} \equiv 1 (mod 6)$

tức $a_1+a_2+a_3+...+a_100 \equiv 1 (mod 6)$

Mà $a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv 1 (mod 6)$

$⇒S \equiv 1 (mod 6)$

Hay $S-1 \vdots 6$ (đpcm)

Bình luận (2)

Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
pro
Xem chi tiết
dam thu a
Xem chi tiết
Big City Boy
Xem chi tiết