Ta có:
S = 1-3+32-33+...............+398-399
\(\Rightarrow\) 9S = 32-33+35-37+......+3100-3101
\(\Rightarrow\) 9S-S = (32-33+35-37+............+3100-3101)
\(\Rightarrow\) 8S = 3101-1
\(\Rightarrow\) S = (3101-1):8
\(\Rightarrow\) S = (3101-1):8\(⋮\)4 (8\(⋮\)4)
\(\Rightarrow\) S = 3101-1\(⋮\)4
\(\Rightarrow\) S:4 dư 1
Ta có : 3S = 3-3^2+3^3-3^4+...+3^99-3^100
3S+S = (3-3^2+3^3-3^4+...+3^99-3^100)
+(1-3+3^2-3^3+3^4-...-3^99)
4S = 3/100-1 (vi bỏ ngoặc thì phải đổi dấu) => S = \(\dfrac{\dfrac{3}{100}-1}{4}\)
=>4S : 3^100 dư 1 (đpcm)