1,
Ta có: R\(_1\) nt R\(_2\)
\(I_1=\frac{U_1}{R_1}\) , \(I_2=\frac{U_2}{R_2}\)
Mà I\(_1\) = I\(_2\)
\(\Rightarrow\frac{U_1}{R_1}=\frac{U_2}{R_2}\)
\(\Rightarrow\frac{U_1}{U_2}=\frac{R_1}{R_2}\)
* C/m : \(R_{tđ}=R_1+R_2\)
U = U\(_1\)+U
Ta có: U\(_1\)= I.R\(_1\) , U\(_2\) = I.R\(_2\) , U=I.R\(_{tđ}\)
Mà U =U\(_1\)+U\(_2\)
=>R\(_{tđ}\)=R\(_1\)+R\(_2\)(dpcm)
* C/m \(\frac{Q_1}{Q_2}=\frac{R_1}{R_2}\)
Ta có: \(Q_1=\frac{U^2}{R_1},Q_2=\frac{U^2}{R_2}\)
\(\frac{Q_1}{Q_2}=\frac{\frac{U^2}{R_1}}{\frac{U^2}{R_2}}=\frac{R_1}{R_2}\left(đpcm\right)\)
2, Ta có: \(R_1//R_2\)
\(I_1=\frac{U_1}{R_1}\) , \(I_2=\frac{U_2}{R_2}\)
\(\rightarrow U_1=I_1.R_1\) , \(U_2=I_2.R_2\)
Mà \(U_1=U_2\)
\(\rightarrow I_1R_1=I_2R_2\)
\(\rightarrow\frac{I_1}{I_2}=\frac{R_2}{R_1}\left(đpcm\right)\)
* C/m: \(\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}\)
R\(_{tđ}\)= \(\frac{U}{I}\) = \(\frac{U}{I_1+I_2}\)
\(\rightarrow\frac{1}{R_{tđ}}=\frac{I_1+I_2}{U}\)
\(\Leftrightarrow\frac{I_1}{U}+\frac{I_2}{U}\)
\(\Leftrightarrow\frac{1}{R_1}+\frac{1}{R_2}\)
\(\rightarrow\)\(\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}\)( đpcm )
* C/m \(\frac{Q_1}{Q_2}=\frac{R_2}{R_1}\)