\(Q=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{40^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{40^2-1}{40^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(40-1\right)\left(40+1\right)}{40^2}\)
\(=\frac{1.3.2.4.3.5...39.41}{2^2.3^2.4^2...40^2}\)
\(=\frac{1.2.3...39}{2.3.4...40}.\frac{3.4.5...41}{2.3.4...40}=\frac{1}{40}.\frac{41}{2}=\frac{1}{2}.\frac{41}{40}\)
Mà \(41>40\Rightarrow\frac{41}{40}>1\Rightarrow\frac{1}{2}.\frac{41}{40}>\frac{1}{2}\Rightarrow A>\frac{1}{2}\)